Problema 718.-

Propuesto por Adolfo Soler (Ingeniero de Telecomunicación)

Sea ABC un triángulo acutángulo en el que el lado AC<BC, sean O y H el circuncentro y ortocentro del triángulo, respectivamente, F el punto de corte de la altura CH con el lado AB, P el punto de corte del lado AC y la perpendicular a OF por F.

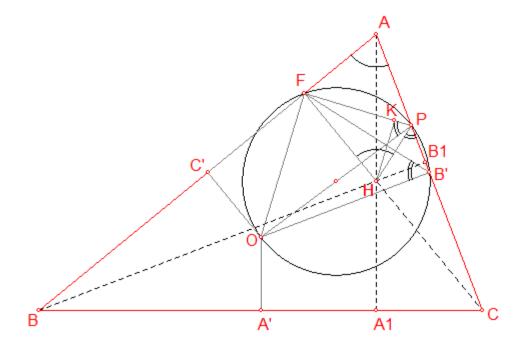
Probar que <FAP = <PHF.

Monk, D. (2009): New Problems in Euclidean Geometry, UKMT

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Notación a usar en el triángulo ABC.

Llamamos A', B' y C' a los puntos medios de los lados BC, CA y AB, respectivamente. Sean además A_1 y B_1 los pies de las alturas trazadas desde los vértices A y B, respectivamente. Sea K el pie de la perpendicular trazada desde el punto H hasta el segmento FP.



Observamos la igualdad de ángulos $\angle FB'O = \angle OPF$, por estar ambos ángulos inscritos en la misma circunferencia abarcando la misma cuerda OF, al tratarse OB'PF de un cuadrilátero concíclico. ($\angle OFP = \angle OB'P = 90^\circ$) Como se tiene que $\angle FB'A = 180^\circ - 2A$, entonces $\angle FB'O = \angle OPF = 2A - 90^\circ$.

Ambos ángulos los señalamos en la figura con el mismo símbolo ...

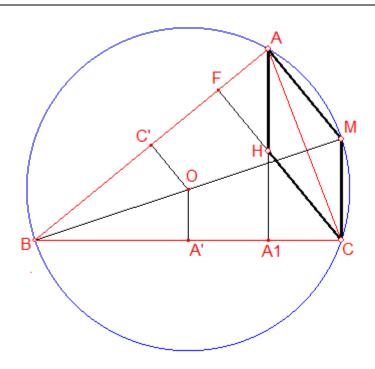
Nuestro objetivo será demostrar que el ángulo $\angle HPC$ deberá ser marcado con el mismo símbolo $\triangle = 2A-90^{\circ}$. Cuando este hecho sea probado, tendremos entonces que, en efecto:

$$\angle PHF = \angle ACH + \angle HPC = (90^{\circ} - A) + (2A - 90^{\circ}) = \angle A.$$

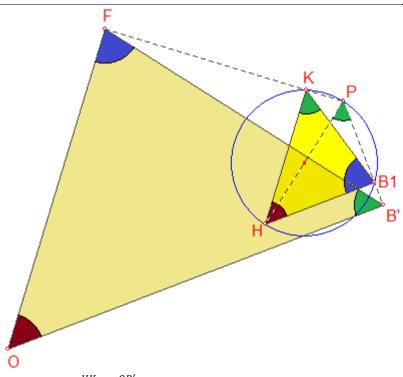
Hasta llegar a este resultado, iremos obteniendo una serie de resultados previos.

Por la igualdad de ángulos $\angle OFC' = \angle HFP$ si ahora trazamos la perpendicular a FP por el punto H, obtenemos una semejanza entre los triángulos rectángulos OC'F y HKF.

De esta semejanza, obtenemos la relación: $\frac{OC'}{OF} = \frac{HK}{HF} \rightarrow HK. OF = HF. OC'$



Como podemos ver en la figura $OC^{'}=\frac{1}{2}AM=\frac{1}{2}HC$ y además HF*HC=HA₁*HA=HB₁*HB Por tanto, $HK.OF=HF.OC^{'}=\frac{1}{2}HF.HC=\frac{1}{2}HB_1.HB=HB_1.OB^{'}$



En definitiva, $HK.OF = HB_1.OB^{'} \rightarrow \frac{HK}{HB_1} = \frac{OB^{'}}{OF}$ y como quiera que estos ángulos $\not \Delta B^{'}OF$ y $\not \Delta B_1HK$ son iguales, obtenemos la semejanza entre los triángulos $\not \Delta B^{'}OF$ y $\not \Delta KHB_1$.

c. q. d.

En particular, nos interesa la igualdad de ángulos $\angle HKB_1 = \angle FB'O$.

Además en el cuadrilátero concíclico HKPB₁ se verifica la igualdad $\angle HPB_1 = \angle HKB_1$.

En definitiva, $\angle HPC = \angle HPB_1 = \angle HKB_1 = \angle FB'O = \triangle = 2A - 90^{\circ}$