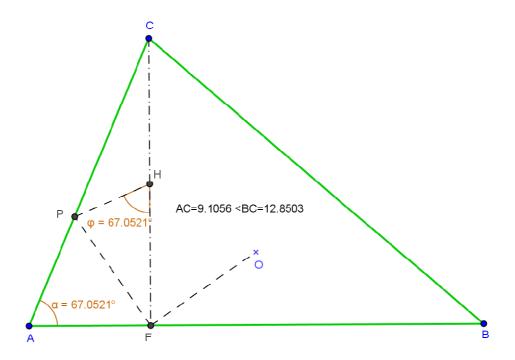
Problema 718.-Sea ABC un triángulo acutángulo en el que el lado AC<BC, sean O y H el circuncentro y ortocentro del triángulo respectivamente, F el punto de corte de la altura CH con el lado AB, P el punto de corte del lado AC y la perpendicular a OF por F.

Probar que <FAP = <PHF.

Monk, D. (2009): New Problems in Euclidean Geometry, UKMT

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Supongamos unos ejes coordenados tomando la base y la altura concurrentes en F como origen de los mismos. Si la altura CF mide c y los segmentos AF y FB miden a y b respectivamente tendremos las siguientes coordenadas:

 $F(0,0);\ A(-a,0);\ B(b,0);\ y\ C(0,c),\ con\ a,b\ y\ c$ números reales positivos. A partir de aquí, tenemos para la altura desde A la ecuación $y=\frac{b}{c}(x+a)$, que encuentra al eje de ordenadas (altura desde C) en el ortocentro $H\left(0,\frac{ab}{c}\right)$. Las coordenadas del circuncentro se obtiene a partir de la mediatriz de $AB: x=\frac{b-a}{2}$ y de la mediatriz de $BC: y-\frac{c}{2}=\frac{b}{c}\left(x-\frac{b}{2}\right)$, obteniéndose el punto $O\left(\frac{b-a}{2},\frac{c^2-ab}{2c}\right)$. La ecuación de la recta perpendicular a OF por F es $y=\frac{(a-b)c}{c^2-ab}x$ que junto con el lado AC de ecuación $y=c+\frac{c}{a}x$ permiten determinar $P\left(\frac{a(c^2-ab)}{a^2-c^2},\frac{ac(a-b)}{a^2-c^2}\right)$. Abreviadamente pondremos P(m,n).

Veamos cómo calcular el coseno de *PHF*. En el triángulo definido por esos puntos podemos expresar, de acuerdo con el teorema del coseno,

$$\cos(PHF) = \frac{PH^2 + HF^2 - PF^2}{2 \cdot PH \cdot HF}$$

Teniendo en cuenta los datos anteriores tendremos $PH^2 + HF^2 - PF^2 = \frac{2ab}{c} \left(\frac{ab}{c} - n\right)$; por otra parte $2 \cdot PH \cdot HF = \frac{2ab}{c} \cdot PH$, por tanto $\cos(PHF) = \frac{\frac{ab}{c} - n}{PH}$.

$$\left(\frac{ab}{c} - n\right)^2 = \left(\frac{ab}{c} - \frac{ac(a-b)}{a^2 - c^2}\right)^2 = \left(\frac{a^2(ab-c^2)}{c(a^2 - c^2)}\right)^2 = \frac{a^4(ab-c^2)^2}{c^2(a^2 - c^2)^2}$$

$$PH^2 = m^2 + \left(\frac{ab}{c} - n\right)^2 = \left(\frac{a(c^2 - ab)}{a^2 - c^2}\right)^2 + \left(\frac{a^2(ab-c^2)}{c(a^2 - c^2)}\right)^2 = \frac{a^2(a^2 + c^2)(ab-c^2)^2}{c^2(a^2 - c^2)^2}$$

Por tanto
$$\cos^2 PHF = \left(\frac{\frac{ab}{c} - n}{PH}\right)^2 = \frac{a^2}{a^2 + c^2}$$
.

Por otra parte, en el triángulo ABC, tenemos

$$\cos^2 FAP = \frac{AF^2}{AC^2} = \frac{a^2}{a^2 + c^2} \,.$$

Y con esto se concluye la demostración.