Problema 720

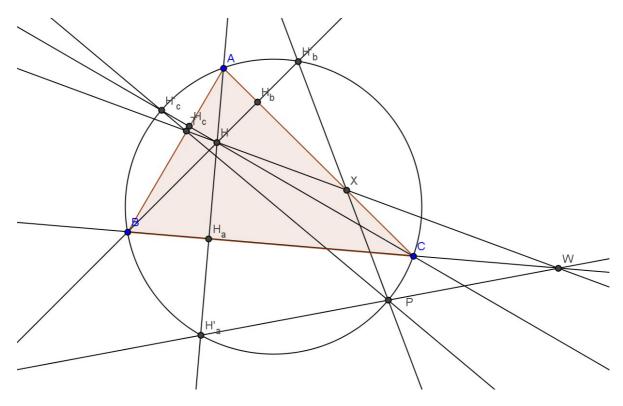
333. Teorema

Si una recta r contiene al ortocentro H corta a los lados del triángulo ABC en W,X,T, las simétricas de r respecto a AB, AC y BC concurren en un punto P del circuncírculo y la recta de Simson de P es paralela a r, e inversamente.

Johnson R.A.(1929) Advanced Euclidean Geometry. (pag. 210). Dover publications, INC. New York.

Solución del director.

Sea el triángulo ABC, de ángulos α, β, γ .



Sean H_a , H_b y H_c los pies de las alturas, y sean H_a , H_b y H_c los puntos de corte de las alturas con la circunscrita. Dado que, por ejemplo HBH_a =90°- γ , que AH_a B= γ , en el triángulo rectángulo BH_aH_a tenemos que H_aBH_a =90°- γ , lo que significa que el simétrico de H respecto a H0 Sea H1 Sea H2 una recta que contenga a H3, que corte a H3 Gen H4 H5 H6 Sea H6 Sea H7 H8 H9 Sea H9 Sea

Sea X el punto de corte de AC con r.

Es <CXW $= \gamma - \omega$.

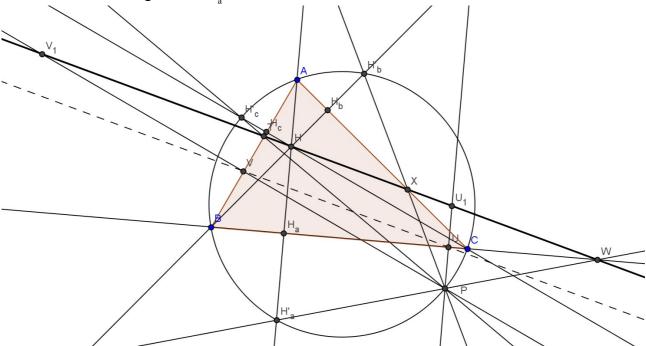
La simétrica de r respecto a AC es tal que contiene a H_b° por ser este el simétrico de H como respecto a AC hemos visto análogamente con el caso H_a° Sea Q de la circunscrita tal que H_b° XQ sea la recta en cuestión. Debe de ser ${}^\circ$ B H_b° Q= ${}^\circ$ H H_b° Q= ${}^\circ$ 0°- $(\gamma - \omega)$ = 90°- $(\gamma + \omega)$

Dado que si consideramos el ángulo ACQ , es la suma de ACB y BCQ, es decir γ , y <BCQ=<BH $_b^C$ Q=<HH $_b^C$ Q=90°- ($\gamma-\omega$)= 90°- $\gamma+\omega$, por lo que <ACQ=90°+ ω ; ello significa que al ser < AH $_a^C$ P=90°- ω , han de ser Q y P coincidentes, por pertenecer a la circunscrita por construcción.

Por último consideremos la simétrica de r con AB Sea T el punto de corte de r con AB. <BTW= γ + α - ω . Sea R el punto de corte de la simétrica estudiada con la cirunscrita. Es <CH' $_c$ R=< H $_c$ H' $_c$ T= 90° -<H $_c$ TH' $_c$ = 90° - $(180^{\circ}$ -<BTW)= 90° - $(180^{\circ}$ - γ - α + ω)= 90° - β - ω Así es <CBR=<CH' $_c$ R = 90° - β - ω . Así, <ABR= 90° - ω , y de nuevo R=P.

Estudiemos la recta de Simson de P.

Si trazamos la perpendicular a BC por P, cortará a BC en un punto U que es el punto medio del segmento PU*, siendo U* el punto en que dicha perpendicular cortará a r, por la correspodiente homotecia con el triángulo WHH'_a.



Si trazamos la perpendicular a AB por P, cortará a AB en V y a r en V*, siendo el triángulo TPV* semejante al H' TH; es decir, V es el punto medio de V*P.

Ello quiere decir que la recta UV(la de Simson de P), es, cqd, paralela a r.