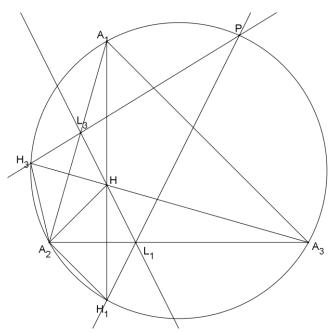
Problema 720

Si una recta r contiene al ortocentro H corta a los lados del triángulo ABC en L_1 , L_2 y L_3 , las simétricas der respecto a AB, AC y BC concurren en un punto P del circuncírculo y la recta de Simson de P es paralela a r, e inversamente.

Solution proposée par Philippe Fondanaiche



Notations : pour disposer de notations homogènes, on désigne par $A_1A_2A_3$ le triangle dénommé ABC dans l'énoncé. Les points H_1,H_2 et H_3 sont les symétriques de l'orthocentre H par rapport aux côtés A_2A_3,A_1A_3 et A_1A_2 .

 $1^{\text{ère}}$ partie : le point P appartient au cercle (Γ) circonscrit au triangle $A_1A_2A_3$.

Il est bien connu que les points H_1,H_2 et H_3 sont sur le cercle circonscrit au triangle $A_1A_2A_3$. Il en résulte que la droite symétrique de la droite $L_1L_2L_3$ par rapport à A_2A_3 est la droite L_1H_1 et la droite symétrique de la droite $L_1L_2L_3$ par rapport à A_1A_2 est la droite L_3H_3 . On désigne par $\alpha_2 = \angle A_1A_2A_3$. On a $\angle H_1A_2H_3 = 2(\angle A_1A_2H + \angle A_3A_2H) = 2\alpha_2$. Par ailleurs :

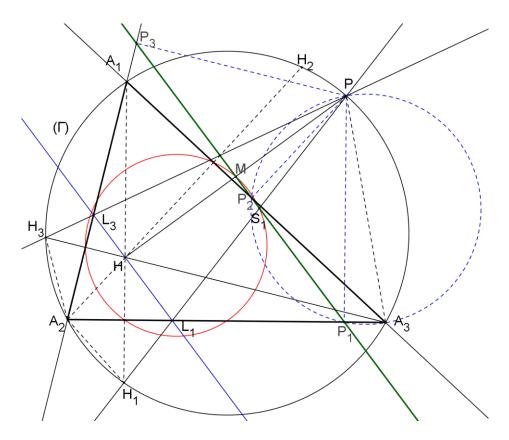
$$\angle H_1 P H_3 = L_1 P L_3 = \pi - \angle H L_1 P - \angle H L_3 P = \pi - (\pi - 2 \angle A_2 L_1 H) - (\pi - 2 \angle A_2 L_3 H) = 2(\angle A_2 L_1 H + \angle A_2 L_3 H) - \pi = 2(\pi - \alpha_2) - \pi = \pi - \alpha_2.$$

Les angles $\angle H_1A_2H_3$ et $\angle H_1PH_3$ sont donc supplémentaires er les points A_2,H_1,P et H_3 sont sur le cercle (Γ) .

De la même manière, on démontre que si P' est le point d'intersection de H_1L_1 et H_2L_2 , les points A_3,H_1,P ' et H_2 sont aussi sur le cercle (Γ). Comme P et P' se trouvent à la fois sur H_1L_1 et sur (Γ), ces deux points sont confondus en un seul point P à l'intersection des trois droites H_1L_1,H_2L_2 et H_3L_3 sur (Γ).

 $2^{\text{ème}}$ partie : la droite $L_1L_2L_3$ est parallèle à la droite de Simson associée au point P.

La droite de Simson associée au point P est la droite qui passe par les trois points P_1 , P_2 et P_3 qui sont les projections de P sur les droites A_2A_3 , A_1A_3 et A_1A_2 .



On désigne par M et S_1 les points d'intersection de la droite de Simson avec les droites HP et H_1L_1P .

Comme les angles $\angle PP_1A_3$ et $\angle PP_2A_3$ sont droits, les points P,P_1,P_2 et A_3 sont cocycliques.

Il en résulte que : $\angle PP_1S_1 = \angle PP_1P_2 = \angle PA_3P_2 = \angle PA_3A_1 = \angle PH_1A_1$.

 ${\rm Or} \ \angle A_2 L_1 H = \ \angle A_2 L_1 H_1 = \ \pi/2 - \angle PH_1 A_1 \ \ {\rm et} \ \ \angle A_2 P_1 S_1 = \pi/2 - \angle PP_1 S_1 \ .$

D'où $\angle A_2L_1H=\angle A_2P_1S_1$. La droite $L_1L_2L_3$ et la droite de Simson associée au point P sont donc parallèles.

On note au passage que le triangle $S_1P_1L_1$ est isocèle de sommet S_1 et que le point S_1 est le milieu de l'hypoténuse PL_1 du triangle rectangle PP_1L_1 . La droite de Simson coupe donc PH en son milieu M et ce point M appartient au cercle d'Euler du triangle $A_1A_2A_3$ obtenu à partir d'une homothétie de centre H et de rapport 1/2 qui transforme le cercle (Γ) en un cercle passant par M milieu de HP et par les milieux des segments HH_1, HH_2, HH_3 qui sont les pieds des hauteurs dans le triangle $A_1A_2A_3$.

 $3^{\text{ème}}$ partie : réciproquement soit un point P du cercle (Γ).Les points d'intersection L_1,L_2 et L_3 de H_1P,H_2P et H_3P avec les droites A_2A_3,A_1A_3 et A_1A_3 sont sur une même droite qui est parallèle à la droite de Simson associée au point P.

En effet par construction la droite PH_1 est symétrique de la droite H_1L_1 par rapport à A_2A_3 et avec les mêmes considérations d'angles que précédemment, on démontre que HL_1 est parallèle à la droite de Simson associée au point P. Il en est de même de HL_2 puis de HL_3 qui sont parallèles à cette même droite. Trois droites parallèles à une même droite et passant par un même point sont nécessairement confondues. C'est la droite $L_1L_2L_3$.