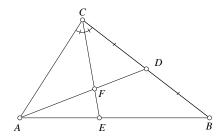
Problema 721. En un triángulo ABC, la mediana AD corta a la bisectriz CE en F. Demostrar que

$$\frac{CF}{FE} = \frac{BC}{AC} + 1$$

D'Ignazio, I. , Suppa, E. : Il Problema geometrico, Dal compasso al Cabri (2001), Interlinea Editrice. (pag. 274)



Soluzione di Ercole Suppa. Indichiamo con $a=BC,\,b=CA,\,c=AB$ le lunghezze dei lati del triangolo $\triangle ABC.$

Premettiamo il seguente

Lemma. Dato un triangolo $\triangle ABC$, se w_c è la lunghezza della bisettrice dell'angolo $\angle C$ ed E è la sua intersezione con il lato AB, vale l'uguaglianza

$$w_c = \frac{2ab}{a+b}\cos\frac{C}{2}$$

Dimostrazione. Osserviamo che l'area del triangolo $\triangle ABC$ è uguale alla somma delle aree dei due triangoli $\triangle AEC$ e $\triangle EBC$, pertanto

$$\frac{1}{2}ab\sin C = \frac{1}{2}bw_c\sin\frac{C}{2} + \frac{1}{2}aw_c\sin\frac{C}{2}$$
 (*)

Dalla (*), ricordando la nota identità $\sin C = 2\sin\frac{C}{2}\cos\frac{C}{2},$ otteniamo

$$ab \sin \frac{C}{2} \cos \frac{C}{2} = \frac{1}{2} w_c \sin \frac{C}{2} (a+b) \quad \Leftrightarrow$$

$$w_c = \frac{2ab}{a+b} \cos \frac{C}{2}$$

Tornando al nostro problema, la lunghezza della bisettrice del triangolo $\triangle ADC$ è data da

$$CF = \frac{2b \cdot \frac{a}{2}}{b + \frac{a}{2}} \cos \frac{C}{2} = \frac{2ab}{a + 2b} \cos \frac{C}{2} \tag{1}$$

a analogamente la lunghezza della bisettrice CE del triangolo $\triangle ABC$ è

$$CE = \frac{2ab}{a+b}\cos\frac{C}{2} \tag{2}$$

Da (1) e (2) segue che

$$FE = CE - CF = \left(\frac{2ab}{a+b} - \frac{2ab}{a+2b}\right)\cos\frac{C}{2} = \frac{2ab^2}{(a+b)(a+2b)}\cos\frac{C}{2}$$
 (3)

Da (2) e (3) otteniamo

$$\frac{CF}{FE} = \frac{\frac{2ab}{a+2b}}{\frac{2ab^2}{(a+b)(a+2b)}} = \frac{a+b}{b} = \frac{a}{b} + 1 = \frac{BC}{AC} + 1$$