Problema 721

En un triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$, la mediana $\overline{\mathsf{AD}}$ corta la bisectriz $\overline{\mathsf{CE}}$ en F.

Demostrar que $\frac{\overline{CF}}{\overline{FE}} = \frac{\overline{BC}}{\overline{AC}} + 1$.

D'Ignazio, I., Suppa, E. (2001): Il Problema geometrico, Dal compasso al Cabri. Interlinea Editrice. (pag. 274)

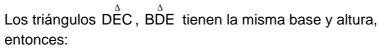
Q

Q+S

Solución de Ricard Peiró i Estruch:

Sea P el área del triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AFC}}$, Q el área del triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{FDC}}$,

R el área del triángulo $\overset{\triangle}{\mathsf{AEF}}$, y S el área del triángulo $\overset{\triangle}{\mathsf{DEF}}$. Dos triángulos que tienen la misma altura las áreas son proporcionales a las bases.



$$\boldsymbol{S}_{\text{BDE}} \, = \boldsymbol{Q} + \boldsymbol{S} \, .$$

$$\frac{\overline{CF}}{\overline{FE}} = \frac{P}{R}$$
.

Los triángulos $\stackrel{\Delta}{\mathsf{FDC}}$, $\stackrel{\Delta}{\mathsf{DEF}}$ tienen la misma altura, entonces:

$$\frac{\overline{\overline{CF}}}{\overline{\overline{FE}}} = \frac{\overline{Q}}{S} \ .$$

$$\frac{\overline{CF}}{\overline{FE}} = \frac{P}{R} = \frac{Q}{S} = \frac{P+Q}{R+S} \ .$$

Aplicando la propiedad de la bisectriz a la bisectriz $\overline{\sf CE}$ del triángulo $\overrightarrow{\sf ABC}$:

$$\frac{\overline{BE}}{\overline{AE}} = \frac{\overline{BC}}{\overline{AC}}$$

Los triángulos AEC, EBC tienen la misma altura, entonces:

$$\frac{\overline{BE}}{\overline{AE}} = \frac{2(Q+S)}{P+R} \, .$$

Los triángulos \overrightarrow{ADC} , \overrightarrow{ABD} tienen la misma base y altura, entonces:

$$P+Q=R+S+Q+S$$
.

$$P = R + 2 \cdot S$$
.

$$\frac{\overline{CF}}{\overline{FE}} - \frac{\overline{BC}}{\overline{AC}} = \frac{\overline{CF}}{\overline{FE}} - \frac{\overline{BE}}{\overline{AE}} = \frac{P}{R} - \frac{2(Q+S)}{P+R} = \frac{P+Q}{R+S} - \frac{2(Q+S)}{R+2 \cdot S + R} = \frac{R+2 \cdot S + Q}{R+S} - \frac{Q+S}{R+S} = 1.$$

Entonces,
$$\frac{\overline{CF}}{\overline{FF}} = \frac{\overline{BC}}{\overline{AC}} + 1$$
.