Problema 722

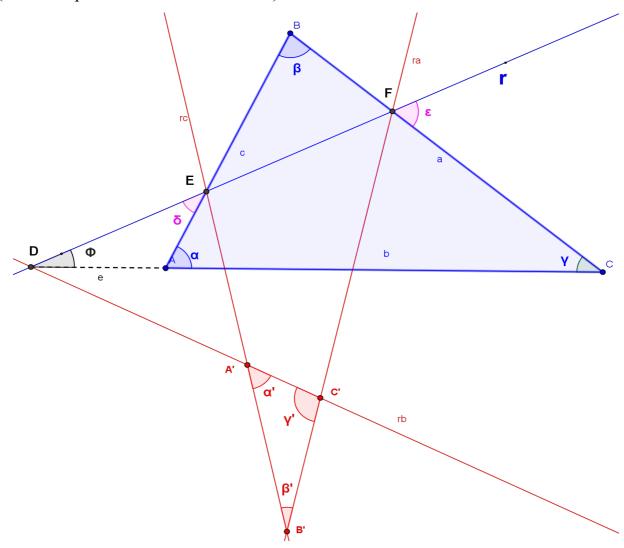
Dado un triángulo ABC, consideremos una recta genérica r.

Sean r_a , r_b y r_c las simétricas de r respecto a a, b y c. Demostrar que los triángulos que forman r_a , r_b y r_c son semejantes.

Solución de Adolfo Soler

Sea α , β , γ los ángulos del triángulo ABC y α' , β' , γ' los ángulos del triángulo A'B'C' formado por las rectas simétricas a r con respecto a los lados del triángulo ABC.

Sea δ y ϵ los ángulos que forma la recta r con los lados del triángulo a los que corta r (o rectas que contienen a esos lados).



Del triángulo EBF, se desprende que $\,\beta=\pi$ - $(\delta+\epsilon)$

Del triángulo DEA se desprende que $\,\Phi = \alpha - \delta\,$

Del triángulo A'DE se desprende que $\alpha' = \pi - 2\Phi - 2\delta = \pi - 2\alpha$ Del triángulo B'EF se desprende que $\beta' = 2 (\delta + \epsilon) - \pi = \pi - 2 \beta$ Del triángulo A'B'C' se desprende que $\gamma' = \pi - (\alpha' + \beta') = \pi - 2 \gamma$.

Con lo cual, los ángulos interiores del triángulo A'B'C', dependen sólo de los ángulos interiores del triángulo ABC y por tanto son independientes de cual sea la recta r y por tanto todos los triángulos que forman las rectas r_a , r_b y r_c son semejantes.

c.q.d