Problema 722.

Dado un triángulo ABC, consideremos una recta genérica r.

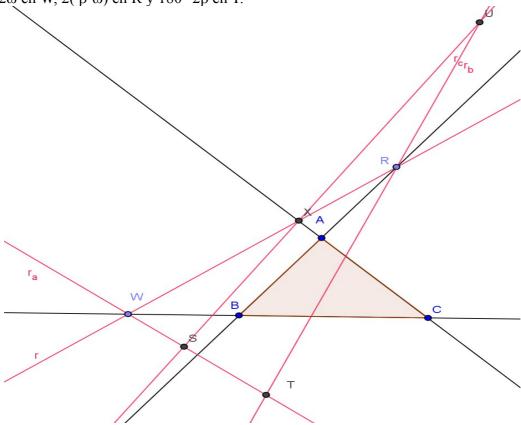
Sean r_a , r_b y r_c las simétricas de r respecto a a, b y c. Demostrar que los triángulos que forman r_a , r_b y r_c son semejantes.

Barroso, R.(2014): Comunicación personal.

Solución del director:

Sean α , β y γ los ángulos del triángulo ABC.

Sea r una recta. Formará un ángulo ω en W con la recta a, y un ángulo β - ω en R con la recta c. Las rectas r_a y r_c se cortarán en T.Así las rectas r r_a y r_c se cortarán formando un triángulo WRT de ángulos 2ω en W, $2(\beta-\omega)$ en R y 180° - 2β en T.



Sea X el punto de corte de r con b. Es <WXC= β + α - ω . Si r_b es la simétrica de r respecto a AC, corta a r_c en U, y a r_a en S, siendo en el triángulo WXS: <SWX= 2ω , <WXS= $2(\beta+\alpha-\omega)$ - 180° , y por tanto, <XSW= 360° - 2β - 2α = 2γ . Así en el triángulo UST, que es el buscado es <UST=180- 2γ , y por último, <SUT= 180° - 2α .

Por tanto la inclinación de r no condiciona los ángulos de STU, por lo que los triángulos son semejantes.

En el caso de obtusángulos se tomarían los valores absolutos.

Es de reseñar, pues que un triángulo equilátero se transforma en otro equilátero, uno isósceles en otro isósceles.

Un triángulo rectángulo degeneraría en dos rectas paralelas.

Ricardo Barroso Campos

Jubilado.

Sevilla