Problema 723

Dado un triángulo ABC, con ortocentro H, consideremos una recta r que sea tangente en V a una determinada circunferencia Ω de centro H.

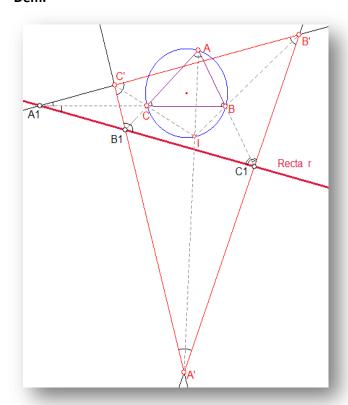
- i) Sean r_a , r_b y r_c las simétricas de r respecto a los lados a, b y c. Demostrar que los triángulos que forman r_a , r_b y r_c de vértices Va, Vb y Vc son congruentes, cualquiera que sea V de Ω .
- ii) Sean dos triángulos Va, Vb y Vc, V*a, V*b y V*c formados de esta manera a partir de V y V*, puntos de Ω . Demostrar que son transformados por un giro de ángulo <VHV* y cuyo centro es un punto W de la circunscrita a ABC.
- iii) Sea s la recta que contiene a VV*, y sea s1 la recta paralela a s por H. Las simétricas de s1 por a, b y c se cortan en un punto W1 de la circunferencia circunscrita (problema 720 de esta revista). Demostrar que W1 es diametralmente opuesto a W.

Barroso, R. (2014): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Apéndice al problema 722.

Lema 1.- Si consideramos el triángulo $A_1B'\mathcal{C}_1$, tenemos que B es el Incentro del mismo. **Dem.-**



Esto es fácil de ver sin más que tener en cuenta que el vértice B' lo determinan r_a y r_c , las rectas simétricas de la recta r, respecto de los lados a y c, respectivamente. Por tanto, el punto B pertenece a las bisectrices de los ángulos en A_1 y C_1 , respectivamente. Por tanto, B será el Incentro del triángulo $A_1B'C_1$.

Lema 2.- Las bisectrices interiores del triángulo A'B'C' pasan por los vértices del triángulo ABC.

Dem.-

En el triángulo $B_1A'C_1$ resulta que, en este caso, el vértice A será uno de los exincentros de dicho triángulo. Observamos que, en efecto, ahora las rectas B_1C y C_1B son bisectrices exteriores del triángulo $B_1A'C_1$. Por tanto, la bisectriz interior que parte desde el tercer vértice, A' se encuentra con las dos anteriores en el punto A (exincentro del triángulo $B_1A'C_1$).

De igual forma, resulta ser C uno de los exincentros del triángulo $B_1C'A_1$.

En definitiva, las bisectrices interiores del triángulo A'B'C' pasan por los vértices del triángulo ABC.

Lema 3.- El Incentro I del triángulo A'B'C' pertenece a la circunferencia circunscrita al triángulo inicial ABC. **Dem.-**

En efecto, por los resultados anteriores, sabemos que las bisectrices B'I y C'I pasan por los vértices B y C, respectivamente.

En el triángulo B'C'I, conocemos el valor de los ángulos en B' y C'

 $\angle IB'C' = 90^{\circ} - B$ y $\angle IC'B' = 90^{\circ} - C$. De esta forma, el ángulo en I será $\angle B'IC' = 180^{\circ} - A$.

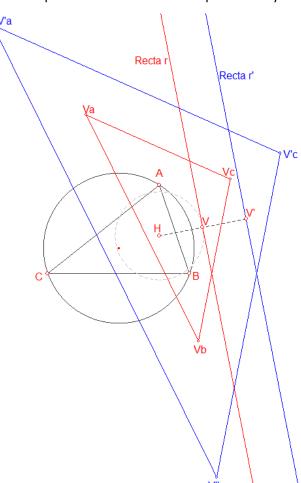
Luego entonces el punto I pertenece al arco capaz del segmento BC y de ángulo A. Por tanto, I ha de pertenecer a la circunferencia circunscrita al triángulo inicial ABC.

Problema 723.-

i) Sean r_a , r_b y r_c las simétricas de r respecto a los lados a, b y c. Demostrar que los triángulos que forman r_a , r_b y r_c de vértices Va, Vb y Vc son congruentes, cualquiera que sea V de Ω .

Sol:

Sea V' el punto homotético de H respecto de V y de razón k. Si trasladamos paralelamente la recta r hasta V',



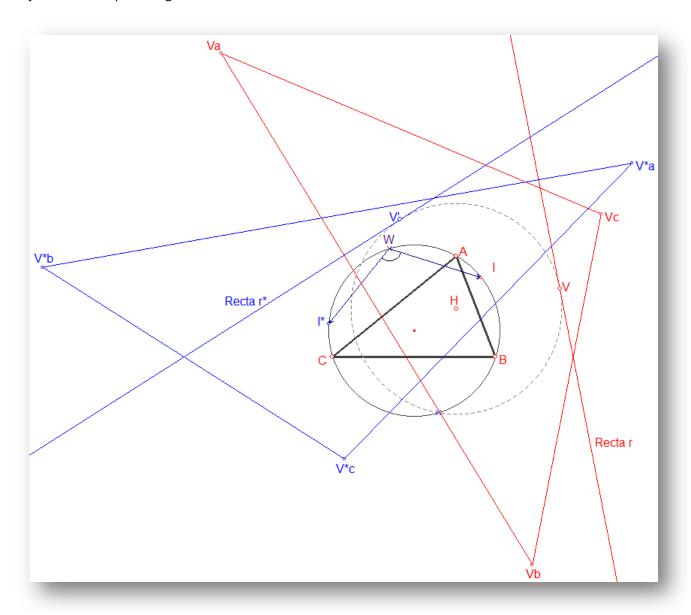
obtenemos la recta r'. Por tanto, los triángulos $V_a V_b V_c$ y $V'_a V'_b V'_c$ son semejantes con la razón de semejanza k. Por tanto, los triángulos que forman $V_a V_b V_c$ y $V'_a V'_b V'_c$ serían aparte de semejantes (**Problema 722**), también congruentes.

Para ver esto, bastaría tener en cuenta que si dos rectas paralelas r y s, que distan k y k' unidades del ortocentro H, sus respectivos triángulos asociados serían semejantes con razón $R = \frac{k'}{k}$. Y se mantiene esta relación siempre que el punto V recorra la circunferencia de centro H y de radio cualquier valor dado.

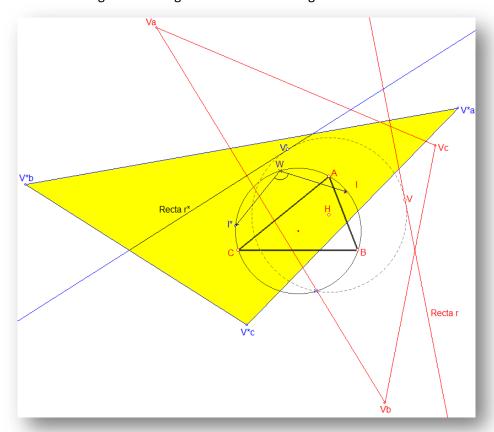
Por tanto y por reducción al absurdo, se probaría que de tener dos triángulos $V_a V_b V_c$ y $V'_a V'_b V'_c$ semejantes y no congruentes, podríamos construir un tercero a distinta distancia de H y sin embargo congruente con alguno de los primeros y que distan de H distintas distancias (Absurdo)

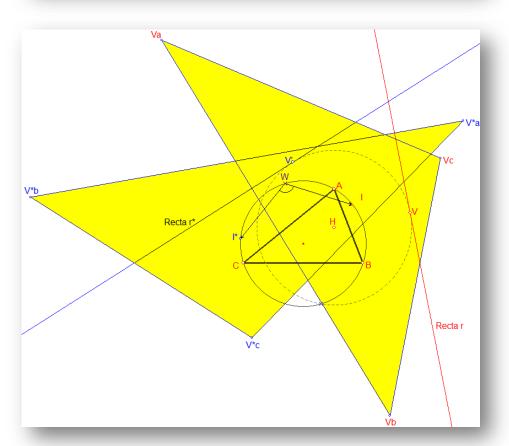
ii) Sean dos triángulos Va, Vb y Vc, V*a, V*b y V*c formados de esta manera a partir de V y V*, puntos de Ω . Demostrar que son transformados por un giro de ángulo <VHV* y cuyo centro es un punto W de la circunscrita a ABC.

Por el Lema 2, tenemos que los incentros I, I* correspondientes a los triángulos asociados a V y V* pertenecen a la circunferencia circunscrita ABC. Como ambos puntos, son imagen uno de otro por un giro, su centro estará en la mediatriz del segmento II* y también pertenecerá a la circunferencia circunscrita pues en el paso al límite cuando V se acerca a V* por la circunferencia Ω , los puntos I y I* se acercan uno a otro por la circunferencia circunscrita ABC. Se justificará así que el ángulo $\angle IWI*=\angle VHV*$



Veamos en las siguientes imágenes el resultado del giro realizado.





iii) Sea s la recta que contiene a VV*, y sea s1 la recta paralela a s por H. Las simétricas de s1 por a, b y c se cortan en un punto W1 de la circunferencia circunscrita (problema 720 de esta revista).

Demostrar que W1 es diametralmente opuesto a W.

Trazamos además de las rectas s y s_1 , la recta s_2 , paralela a las anteriores y tangente a la circunferencia Ω en el punto V".

Esta última recta, por los apartados anteriores, determina un triángulo congruente con las dos iniciales. Sea el incentro W_1 de este triángulo WaWbWc que estará situado, por supuesto, en un punto de la circunferencia circunscrita al triángulo ABC (apartado anterior).

Además sucede que:

La recta Va-A pasa por el incentro I del triángulo Va-Vb-Vc.

La recta V*a-A pasa por el incentro I* del triángulo V*a-V*b-V*c.

La recta Wa-A pasa por el incentro W₁ del triángulo Wa-Wb-Wc.

Ahora bien, como V'' pertenece a la mediatriz de V y V' también M pertenecerá a la mediatriz del segmento II* y, por tanto, W_1 será el punto diametralmente opuesto al W que era el centro de giro de los dos triángulos iniciales.

Que este punto W_1 coincida con el punto de concurrencia de las simétricas de la recta s_1 está justificado por el apartado inicial, ya que este sería el punto incentro del triángulo en su posición límite, cuando la circunferencia de centro H se reduce al propio punto H.

