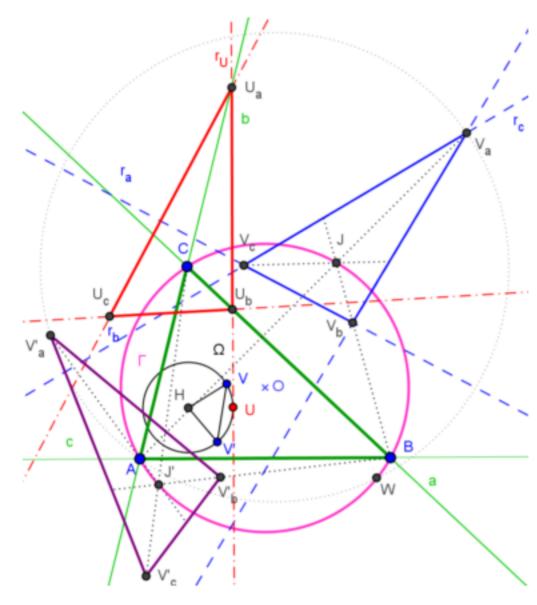
Problema 723.- Dado un triángulo ABC, con ortocentro H, consideremos una recta r que sea tangente en V a una determinada circunferencia Ω de centro H.

- A) Sean $r_{\alpha'}$ r_{b} y r_{c} las simétricas de r respecto a a, b y c. Demostrar que los triángulos que forman $r_{\alpha'}$ r_{b} y $r_{c'}$ $V_{\alpha'}$ V_{b} y V_{c} son congruentes, cualquiera que sea V de Ω .
- B) Sean dos triángulos $V_{a'}$ V_b y V_c , $V'_{a'}$ V'_b y V'_c formados de esta manera a partir de V y V', puntos de Ω . Demostrar que son transformados por un giro de ángulo <VHV' y cuyo centro es un punto W de la circunscrita a ABC.
- C) Sea s la recta que contiene a VV' y sea s₁ la recta paralela a s por H. Las simétricas de s₁ por a, b y c se cortan en un punto W₁ de la circunferencia circunscrita (problema 720 de esta revista).

Demostrar que W_1 es diametralmente opuesto a W.

Barroso, R. (2014): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



A) Si se tienen dos puntos distintos V y V' sobre Ω , los triángulos que se forman, de los que ya sabemos por el problema 722 que son semejantes, son también congruentes, pues para pasar de la tangente en V a la tangente en V' sólo se necesita efectuar un giro, que es una transformación isométrica.

Aprovechando esa propiedad, vamos a calcular ahora, en función del radio r_{Ω} de la circunferencia Ω , la longitud de los lados del triángulo asociado a un punto cualquiera de Ω .

Tomamos U sobre Ω tal que el segmento HU sea paralelo a uno de los lados del triángulo. La recta r_U es perpendicular a ese lado y al ser su propia simétrica respecto de él contendrá dos de los vértices del triángulo T_U . Es inmediato ver que el incentro de T_U es el vértice C. Así pues en el triángulo $U_\alpha CU_b$ los ángulos respectivos son $90-\alpha,180-\gamma$ y $90-\beta$.

La altura desde C es $r_{\Omega} = CU_b \cdot \cos \beta$. Del teorema de los senos obtenemos $U_a U_b = \frac{CU_b \cdot sen \gamma}{cos \alpha}$. De ambas resulta

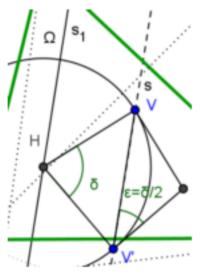
finalmente $U_a U_b = \frac{r_{\Omega} \cdot sen \gamma}{\cos \alpha \cdot \cos \beta}$, que sólo depende del radio de Ω y de los ángulos del triángulo, pero no de la posición del punto U.

Del ese cálculo se concluye que cuando r_Ω es cero, el triángulo asociado se reduce a un punto: el incentro.

Esto es una generalización del problema 720: cuando el radio es cero, la recta contiene al ortocentro y sus simétricas definen un triángulo reducido a un punto sobre la circunscrita. También es claro que para rectas paralelas diferentes los triángulos engendrados por las simetrías son todos ellos de lados paralelos y con el mismo incentro.

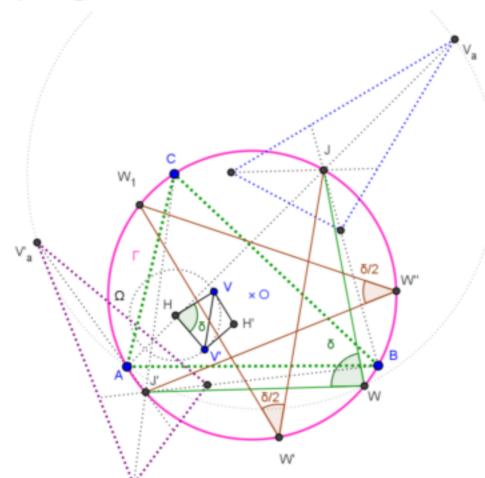
B) Es evidente que el ángulo del giro ha de ser ése, ahora vamos a ver cómo encontrar el centro de semejanza.

Si en una semejanza el segmento MN se transforma en M'N' y la intersección de los mismos (o de sus prolongaciones) es el punto L, el centro de semejanza queda definido por el punto común (distinto de L) a las circunferencias que pasan por MM'L y NN'L.



Sean J y J' los incentros de los triángulos T_V y $T_{V'}$. El segmento JV_a se ha de transformar en el $J'V'_a$. Estos segmentos concurren en A, por tanto, el centro de semejanza ha de estar en la circunferencia que contiene al par de homólogos J y J' y al punto de intersección A, luego ya tenemos que el centro de semejanza está en Γ (circunferencia circunscrita a ABC). Es uno de los extremos del diámetro perpendicular a JJ'.

C) La recta s forma con las tangentes en V y V' un ángulo igual a la mitad del ángulo del giro δ , que transforma el triángulo T en T'.



El triángulo asociado a s tiene incentro W_1 . El centro de giro W' que transforma el triángulo T_V en el triángulo T_S es tal que el ángulo $4JW'W_1 = \delta/2$. El centro de giro W'' que transforma T_S en T_V , también verifica que $4J'W''W_1 = \delta/2$. Además $4JWJ' = \delta$. Esta situación sólo es posible si el punto W_1 es uno de los que divide el arco JJ' en dos partes iguales, esto es, el punto W_1 en que degenera el triángulo asociado a s_1 , incentro del triángulo asociado a la recta s, es el diametralmente opuesto a W, como pretendíamos demostrar.