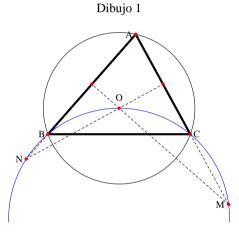
Pr. Cabri 724 por César Beade Franco

Enunciado

Dado que en un triángulo ABC, la mediatriz de AB interseca la recta AC en M y la de AC interseca la recta AB en N, los cuatro puntos B C M N y el circuncentro O del triángulo son concíclicos (circunferencia de Mannhiem).

Solución

Una adecuada elección del sistema de referencia proporciona una solución analítica.



Suponemos que los vértices del triángulo están sobre la circunferencia de centro O=(0,0) y radio 1, es decir, con ecuaciones paramétricas (cost,sent), donde el ángulo t se mide a partir de (1,0) en sentido antihorario. Suponemos además que BC es una cuerda horizontal.

En estas condiciones $A = (\cos \alpha, \sin \alpha)$, $B = (\cos (\pi - \beta), \sin (\pi - \beta))$, $C = (\cos \beta, \sin \beta)$ y circuncentro O.

Resulta que
$$\mathbf{M} = \left(\frac{1}{2} \left(\text{Csc}[\beta] \, \text{Cos}[\alpha - \beta] \right), \, \text{Cos}\left[\frac{\alpha - \beta}{2}\right]^2 \, \text{Csc}[\beta] \right) \, \mathbf{y} \, \mathbf{N} = \left(\frac{1}{2} \, \text{Csc}[\beta] \, \text{Sen}[\alpha + \beta], \, \text{Csc}[\beta] \, \text{Sen}\left[\frac{\alpha + \beta}{2}\right]^2 \right).$$

Si calculamos la circunferencia circunscrita a O, B y C vemos que coincide con la circunscrita a O, M y N. Y resulta ser de centro $\left(0\,,\,\frac{\mathtt{Csc}\left[\beta\right]}{2}\right)$ y radio $\left|\frac{\mathtt{Csc}\left[\beta\right]}{2}\right|$.

Y resulta que $-\beta$ es el complementario del ángulo A. O sea que si R es el radio de la circunscrita, el radio de ésta es $|\frac{R}{2 \text{ Sen} \left(\frac{\pi}{2} - A\right)}|$

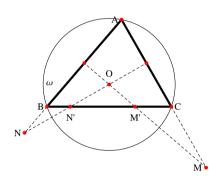
Otra forma de demostrar la conciclidad de estos 5 puntos sería probar que los inversos de M y N respecto a la circunferencia ω circunscrita al triángulo, están sobre la recta BC ya que la inversa de la circunferencia BOC respecto a ω es precisamente esta recta.

Tomemos como vértices del triángulo A(a,b), B(0,0) y C(1,0). Las coordenadas de M y N son M($\frac{a \left(-1+a^2+b^2\right)}{2 \left(-a+a^2+b^2\right)}$, $\frac{b \left(-1+a^2+b^2\right)}{2 \left(-a+a^2+b^2\right)}$) y N($\frac{-a^2+a^3+b^2+a \ b^2}{2 \left(-a+a^2+b^2\right)}$, $\frac{b \left(-2 \ a+a^2+b^2\right)}{2 \left(-a+a^2+b^2\right)}$) y el circumcírculo

tiene centro
$$O(\frac{1}{2}, \frac{-a+a^2+b^2}{2b})$$
 y radio $R = \frac{1}{2} \sqrt{1 + \frac{\left(-a+a^2+b^2\right)^2}{b^2}}$.

Los inversos de M y N son, respectivamente, $M'(\frac{-1+a^2+b^2}{2(-1+a)}, 0)$ y $N'(\frac{a^2+b^2}{2a}, 0)$. vemos que están sobre el eje de abscisas, es decir la recta BC.

Dibujo 2



Veamos ahora una demostración sintética a partir del dibujo 1 y 3.

El triángulo ANC es isósceles con ángulos iguales en A y C, lo que significa que el ángulo en N mide π - 2A. Como el ángulo BOC = 2A, se deduce que el cuadrilátero NBOC es cíclico.

Análogamente, AMB es isósceles con ángulos iguales en A y B, de lo que deducimos que el ángulo en M mide también π - 2A. Así que el otro cuadrilátero MCOB también es cíclico. Por tanto N, B, O, C y M están en la misma circunferencia. el próximo dibujo lo aclara más.

Dibujo 3

Si cambia el triángulo la demostración anterior requiere alguna modificación al variar la posición de M y N como se observa en el dibujo 4. Por ejemplo, en el triángulo izquierdo es fácil comprobar que BNO = $\frac{\pi}{2}$ +A y que OMB = $\frac{\pi}{2}$ -A, lo que implica la conciclidad de BNOM. También es concíclico CMON al ser CMO = $\frac{\pi}{2}$ +A y que ONC = $\frac{\pi}{2}$ -A.

Dibujo 4

