Problema 725.-

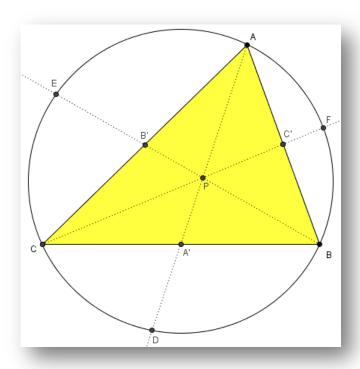
Sea ABC un triángulo inscrito en un círculo y sea P el baricentro. Extendemos AP, BP y CP hasta encontrar el círculo en los puntos D, E y F. Demostrar que AP/PD + BP/PE + CP/PF =3.

KR Sastry. Addis Ababa Etiopía. Mathematics Magazine. (1982) Vol. 55. May, pág. 181

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

En el triángulo ABC, de lados a, b y c, observaremos las relaciones existentes entre las medianas

$$AA^{'} = m_a, BB^{'} = m_b, CC^{'} = m_c.$$



Respecto de la mediana m_a , obtenemos por la potencia del punto A' respecto de la circunferencia circunscrita ABC, la relación:

$$A^{'}D.A^{'}A = A^{'}C.A^{'}B \rightarrow A^{'}D.m_{a} = \frac{a}{2}.\frac{a}{2}$$

Entonces, $A^{'}D = \frac{\frac{a^{2}}{4}}{m_{a}}$

Expresamos los segmentos AP, PA' y A'D del

$$AP = \frac{2}{3}m_a$$
, $PA' = \frac{1}{3}m_a$, $A'D = \frac{\frac{a^2}{4}}{m_a} \rightarrow AP = \frac{2}{3}m_a$ y
$$PD = PA' + A'D \rightarrow PD = \frac{\frac{1}{3}m_a^2 + \frac{1}{4}a^2}{m_a}$$

En definitiva,
$$\frac{AP}{PD} = \frac{8m_a^2}{4m_a^2 + 3a^2}$$

Como quiera que, $2m_a^2 + \frac{a^2}{2} = b^2 + c^2 \rightarrow 8m_a^2 = 2(-a^2 + b^2 + c^2); 4m_a^2 + 3a^2 = 2(a^2 + b^2 + c^2)$

$$\frac{AP}{PD} = \frac{8m_a^2}{4m_a^2 + 3a^2} = \frac{2(-a^2 + 2b^2 + 2c^2)}{2(a^2 + b^2 + c^2)} = \frac{-a^2 + 2b^2 + 2c^2}{a^2 + b^2 + c^2}$$

Iterando del mismo modo las relaciones para las otras dos medianas,
$$m_b$$
 y m_c , llegaríamos a la siguiente identidad:
$$\frac{AP}{PD} + \frac{BP}{PE} + \frac{CP}{PF} = \frac{-a^2 + 2b^2 + 2c^2}{a^2 + b^2 + c^2} + \frac{2a^2 - b^2 + 2c^2}{a^2 + b^2 + c^2} + \frac{2a^2 + 2b^2 - c^2}{a^2 + b^2 + c^2}$$

$$\frac{AP}{PD} + \frac{BP}{PE} + \frac{CP}{PF} = 3$$
 cqd