Problema 725

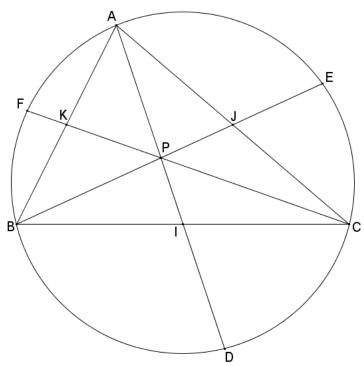
Sea ABC un triángulo inscrito en un círculo y sea P el baricentro. Extendemos AP BP y CP hasta encontrar el círculo en los puntos D E y F .

Demostrar que

AP/PD + BP/PE + CP/PF = 3.

KR Sastry. Addis Ababa Etiopía. Mathematics Magazine. (1982) Vol 55. May, pag 181

Solution proposée par Philippe Fondanaiche



P le barycentre du triangle ABC est à l'intersection des médianes AI,BJ et CK. On désigne par :

- a,b et c les longueurs des côtés BC,CA et AB du triangle ABC,
- m_a, m_b et m_c les longueurs des médianes AI,BJ et CK.

La puissance de I par rapport au cercle circonscrit au triangle ABC est égale à IB.IC = ID.ID. On en déduit ID = $a^2/4m_a$. D'où PD = PI + ID = $m_a/3 + a^2/4m_a$. = $(3a^2 + 4m_a^2)/12m_a$. Comme AP = $2m_a/3$, on obtient la relation AP/PD = $8m_a^2/(3a^2 + 4m_a^2)$.

Or les longueurs des médianes d'un triangle s'expriment en fonction des côtés selon les formules : $4m_a^2 = 2b^2 + 2c^2 - a^2$, $4m_b^2 = 2c^2 + 2a^2 - b^2$ et $4m_c^2 = 2a^2 + 2b^2 - c^2$, ce qui donne : $AP/PD = (2b^2 + 2c^2 - a^2)/(a^2 + b^2 + c^2)$

puis BP/PE = $(2c^2 + 2a^2 - b^2)/(a^2 + b^2 + c^2)$

et CP/PF = $(2a^2 + 2b^2 - c^2)/(a^2 + b^2 + c^2)$

Il en résulte AP/PD + BP/PE + CP/PF = $(3a^2 + 3b^2 + 3c^2)/(a^2 + b^2 + c^2) = 3.C.g.f.d.$