Problema 727

En el triángulo $\stackrel{\triangle}{ABC}$ de la figura, $A = 45^{\circ}$, $B = 60^{\circ}$, P es el punto medio del lado \overline{AB}

 \overline{AB} . Determinar los puntos M, N de los lados \overline{BC} , \overline{AC} , respectivamente, tal que hace mínimo el perímetro del triángulo \overline{PMN} .

Solución de Ricard Peiró:

Sea P' el simétrico de P respecto del lado \overline{BC} .

Sea P" el simétrico de P' respecto del lado \overline{AC} .

La recta que pasa por los puntos P, P" corta el lado \overline{AC} en el punto La recta que pasa por los puntos N, P' corta el lado \overline{BC} en el punto

Demostraremos que el triángulo PMN es el de perímetro mínimo.

Sea
$$\overline{PM} = m$$
, $\overline{PN} = n$, $\overline{MN} = r$.

El perímetro del triángulo $\stackrel{\Delta}{\text{PMN}}$ es m+n+r.

Notemos que $\overline{PM} = P'M = m$, $\overline{NP'} = \overline{NP''} = m+r$.

Queremos demostrar que el perímetro del triángulo $\stackrel{\triangle}{\mathsf{PKL}}$ es mayor o igual que el perímetro del triángulo $\stackrel{\triangle}{\mathsf{PMN}}$,

Sea
$$\overline{PK} = k$$
, $\overline{PL} = I$, $\overline{KL} = t$.

El perímetro del triángulo $\overset{\triangle}{PKL}$ es k+l+t.

Sea
$$\overline{LP''}=d$$
. $\overline{LP''}=\overline{LP'}=d$.

Aplicando la desigualdad triangular al triángulo $\overset{\scriptscriptstyle \Delta}{\mathsf{PLP}}$ ":

$$\overline{PL} + \overline{LP''} \geq \overline{PP''} \; .$$

 $I+d\geq m+n+r\;.$

$$\overline{PK} = \overline{P'K} = k$$
.

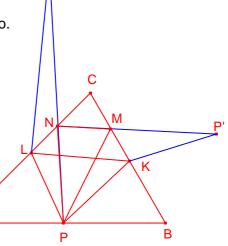
Aplicando la desigualdad triangular al triángulo $\stackrel{^{\Delta}}{\mathsf{LKP}}$:

$$\overline{LK} + \overline{KP'} \ge \overline{LP'}$$
.

$$t+k \ge d$$
.

$$t+k+l \ge d+l \ge m+n+r$$
.

Entonces, el perímetro del triángulo $\overset{\triangle}{\mathsf{PKL}}$ es mayor o igual que el perímetro del triángulo $\overset{\triangle}{\mathsf{PMN}}$.



N.

M.