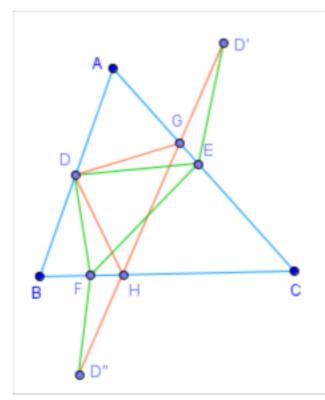
Problema 727.- En un triángulo, ABC, $con < CAB = 45^\circ$, $< CBA = 60^\circ$, P es el punto medio de AB. Hallar los puntos M y N sobre CB y AC, respectivamente, que hacen mínimo el perímetro del Δ PMN.

Martínez, R. (2014): Calendari Matemátic 2014-2015. 16 Novembre.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



La siguiente demostración, sumamente elegante, lo encontré en Internet y es debida al matemático húngaro L. Féjer. Ha sido publicada en la excelente página www.diophante.fr, que dirige Philippe Fondanaiche, en el problema D159 del pasado mes de septiembre.

De los triángulos inscritos en ABC, que tienen un vértice fijo D en el lado AB, el de menor perímetro es aquel cuyo lado opuesto pasa por los simétricos D' y D'' de D respecto a AC y BC, pues el perímetro de ese triángulo DGH es igual al segmento D'D'' y el de otro triángulo DEF es la línea quebrada D'EFD'' mayor que D'D''.

Vamos a calcular ese perímetro. Es la longitud del segmento P'Q' de la segunda figura. En el triángulo PP'Q', el ángulo en P mide 105º. A partir de los triángulos rectángulos ADP y BEP calculamos las longitudes de $PP' = c \cdot sen \alpha$ y $PQ' = c \cdot sen \beta$. Aplicando el teorema del coseno al triángulo PP'Q' resulta $P'Q'^2 = c^2 \cdot (sen^2 45 + sen^2 60 - 2sen 45 \cdot sen 60 \cdot \cos 105)$. Los cálculos oportunos dan $P'Q'^2 = \frac{c^2}{4} \cdot (8 - \sqrt{3})$. Así pues el perímetro mínimo es $P'Q' = \frac{c}{2}\sqrt{8 - \sqrt{3}}$.

