Problema 728.

Sea ABC un triángulo acutángulo con alturas AD, BE y CF. Sea O el circuncentro de ABC. Mostrar que los segmentos OA, OF, OB, OD, OC, OE dividen al triángulo ABC en tres pares de triángulos de áreas iguales.

Solución enviada por Bruno Salgueiro Fanego, Viveiro, Lugo.

Mostremos que los tres pares de triángulos *OBD* y *OEA*, *OCE* y *OFB*, *OEA* y *OBD* tienen áreas iguales.

Tenemos que $[OBD] = \frac{1}{2}BO \cdot BD \operatorname{sen} \angle DBO$, donde BO es el circunradio de ABC, BD es un lado del triángulo ABD, que es rectángulo en D por ser $AD \perp BD$, y

$$\angle DBO = \angle OCB = \frac{1}{2}(\pi - \angle BOC) = \frac{1}{2}(\pi - 2\angle BAC)$$
 debido a que *OBC* es isósceles porque *OB*

y OC son iguales al circunradio de ABC y $\angle BOC$ es el ángulo central asociado al ángulo $\angle BAC$ inscrito en la circunferencia circunscrita a ABC, luego

$$[OBD] = \frac{1}{2}BO \cdot AB\cos\angle DBA\sin\left(\frac{\pi}{2} - \angle BAC\right) = \frac{1}{2}BO \cdot AB\cos\angle CBA\cos\angle BAC.$$

Del mismo modo, $[OEA] = \frac{1}{2}AO \cdot AE \operatorname{sen} \angle OAE = \frac{1}{2}AO \cdot AB \operatorname{cos} \angle BAC \operatorname{sen} \left(\frac{\pi}{2} - \angle CBA\right)$, con lo cual [OBD] = [OEA]. Análogamente, [OCE] = [OFB] y [OEA] = [OBD].