Problema 729

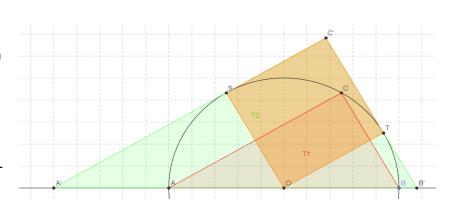
C. 1.271. Consideremos el círculo circunscrito a un triángulo rectángulo. Dibujemos el semicírculo conteniendo al triángulo, y tracemos las tangentes paralelas a los catetos. Tales paralelas junto a la recta que contiene a la hipotenusa, construyen un triángulo rectángulo semejante al original. Hallar los ángulos del triángulo si el área del mayor es 6 veces el área del menor.

Komal (2015): Enero. (Basado sobre una idea de I. Légrádi, Sopron)

Solución de Manuel Gándara Pastrana, profesor interino en IES Fernando Blanco en Cee, A Coruña.

Se puede suponer que la circunferencia es de radio 1, basta tomar unidad de medida su radio.

El triángulo mayor A'B'C' se puede dividir en un cuadrado OTC'S de área 1 y los triángulos rectángulos A'OS y OB'T que son semejantes a ABC y A'B'C'.



Sea α el ángulo correspondiente a A', A y O en los triángulos A'OS, ABC y OB'T respectivamente.

En AOS se tiene
$$\tan \alpha = \frac{\overline{OS}}{\overline{A'S}} = \frac{1}{\overline{A'S}}$$
, luego $\overline{A'S} = \frac{1}{\tan \alpha}$. Área de AOS = $\frac{1}{2\tan \alpha}$

En OB'T se tiene
$$\tan \alpha = \frac{\overline{TB'}}{\overline{TO}} = \overline{TB'}$$
. Área de OB'T = $\frac{\tan \alpha}{2}$

Luego Área A'B'C' =
$$1 + \frac{1}{2\tan\alpha} + \frac{\tan\alpha}{2} = 1 + \frac{1}{2}\left(\frac{1}{\tan\alpha} + \tan\alpha\right) = 1 + \frac{1}{2} \cdot \frac{1}{\sin\alpha\cdot\cos\alpha} = 1 + \frac{1}{\sin2\alpha}$$

Por otra parte en ABC los catetos son $\overline{AB}\cos\alpha = 2\cos\alpha$ y $\overline{AB}\sin\alpha = 2\sin\alpha$

Área ABC =
$$\frac{2 \cos \alpha \cdot 2 \sin \alpha}{2}$$
 = sen 2α

El ángulo α varía entre 0 y 90 grados para estos triángulos. Luego sen $2\alpha \ge 0$.

El problema pide los ángulos del triángulo ABC para que Área A'B'C' = 6 · Área ABC

Que es lo mismo que encontrar α para que se cumpla $1 + \frac{1}{\sin 2\alpha} = 6 \cdot \sin 2\alpha$

Resolviendo la ecuación da soluciones $-\frac{1}{3}$ y $\frac{1}{2}$ para $\sin 2\alpha$. Como este seno no es negativo, tiene que ser $\sin 2\alpha = \frac{1}{2}$. Por tanto $2\alpha = 30^o$ y $\alpha = 15^o$

El triángulo rectángulo tiene ángulos agudos de 15° y de 75° .