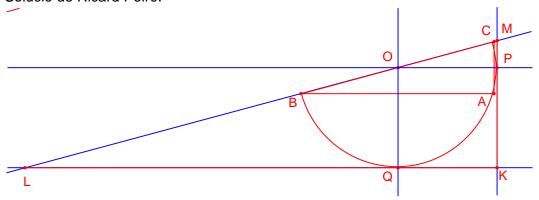
Problema 729

Consideremos el círculo circunscrito a un triángulo rectángulo. Dibujemos el semicírculo conteniendo al triángulo, y tracemos las tangentes paralelas a los catetos. Tales paralelas junto a la recta que contiene a la hipotenusa, construyen un triángulo rectángulo semejante al original. Hallar los ángulos del triángulo si el área del mayor es 6 veces el área del menor.

Solució de Ricard Peiró:

KöMaL C1271 Enero 2015.



Sea el triángulo rectángulo \overrightarrow{ABC} , $\overrightarrow{A} = 90^{\circ}$.

Sea O el circuncentro del triángulo $\stackrel{\triangle}{ABC}$, O es el punto medio de la hipotenusa.

El radio de la circunferencia circunscrita es $\overline{OA} = \frac{a}{2}$.

Sea P el punto de tangencia de la recta tangente a la semicircunferencia paralela al cateto \overline{AC} . Sea Q el punto de tangencia de la recta tangente a la semicircunferencia paralela al cateto \overline{AB} .

Les dos rectas tangentes y la recta que contiene la hipotenusa forma el triángulo $\stackrel{\triangle}{\text{KLM}}$ semejante al triángulo $\stackrel{\triangle}{\text{ABC}}$.

$$\overline{OP} = \overline{OQ} = \frac{a}{2} \, . \quad \overline{KP} = \overline{KQ} = \frac{a}{2} \, .$$

Los triángulos rectángulos ABC, POM son semejantes. Aplicando el teorema de Tales:

$$\frac{\overline{PM}}{\frac{a}{2}} = \frac{b}{c} . \text{ Entonces, } \overline{PM} = \frac{a}{2} \frac{b}{c} .$$

$$\overline{KM} = \frac{a}{2} + \frac{a}{2}\frac{b}{c} = \frac{a}{2c}(b+c)$$
. Análogamente, $\overline{KL} = \frac{a}{2b}(b+c)$.

El área del triángulo KLM es 6 veces el área del triángulo $\stackrel{\triangle}{\mathsf{ABC}}$:

$$\frac{\frac{a}{2c}(b+c)\frac{a}{2b}(b+c)}{2} = 6\left(\frac{bc}{2}\right).$$
 Simplificando:

 $a^2(b+c)^2=24b^2c^2$. Dividiendo la expresión por a^4 .

 $(\sin B + \cos B)^2 = 24 \sin^2 B \cdot \cos^2 B.$

 $1 + 2\sin B \cdot \cos B = 6(2\sin B \cdot \cos B)^2.$

 $1 + \sin 2B = 6 \sin^2 2B$. Resolviendo la ecuación:

$$\sin 2B = \frac{1}{2}$$
. $2B = 30^{\circ}, 150^{\circ}$.

Entonces, $B = 15^{\circ}$, o $B = 75^{\circ}$.

Entonces, los ángulos del triángulo ~ABC~ son $~A=90^o, B=15^o, C=75^o$, o bien $~A=90^o, B=75^o, C=15^o$.