Problema 731.

En el triángulo rectángulo $\stackrel{\triangle}{ABC}$, $A=90^\circ$ se traza la altura \overline{AD} (D pertenece a \overline{BC}) Sea M sobre \overline{AB} y N sobre \overline{AC} pies de les bisectrices interiores de los ángulos C y B, respectivamente.

Sea P el punto intersección de \overline{AD} y \overline{MN} .

Demostrar que $\overline{AP} = r$, radio de la circunferencia inscrita al triángulo \overrightarrow{ABC} .

Solución de Ricard Peiró:

Aplicando la propiedad de la bisectriz:

$$\overline{AM} = \frac{bc}{a+b}$$
, $\overline{AN} = \frac{bc}{a+c}$.

Sea $\alpha = \angle AMN$.

Aplicando el teorema de los senos al triángulo $\stackrel{\triangle}{\mathsf{APM}}$:

$$\frac{\overline{\mathsf{AP}}}{\sin\alpha} = \frac{\overline{\mathsf{AM}}}{\sin(\mathsf{C} + \alpha)} \ .$$

$$\overline{AP} = \frac{\overline{AM} \cdot sin \, \alpha}{sin(C + \alpha)} = \frac{\overline{AM} \, \overline{\overline{MN}}}{\frac{c}{a} \, \overline{\overline{MN}} + \frac{b}{a} \, \overline{\overline{MN}}} = \frac{a \cdot \overline{AM} \cdot \overline{AN}}{c \cdot \overline{AM} + b \cdot \overline{AN}} \, .$$

$$\overline{AP} = \frac{a}{\frac{c}{\overline{AN}} + \frac{b}{\overline{AM}}} = \frac{a}{\frac{c}{\overline{bc}} + \frac{b}{\overline{bc}}} = \frac{abc}{ac + c^2 + ab + b^2} = \frac{abc}{a(a + b + c)} = \frac{bc}{a + b + c}.$$

El área del triángulo rectángulo ABC es:

$$S_{ABC} = \frac{1}{2}bc = \frac{1}{2}(a+b+c)r$$
.

Entonces:
$$\overline{AP} = \frac{r(a+b+c)}{a+b+c} = r$$
.