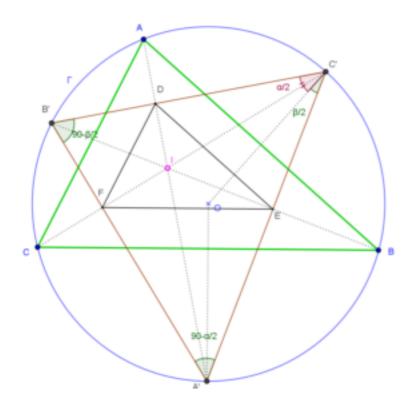
Problema 732 c.- Las bisectrices del triángulo ABC referentes a los vértices A, B y C se intersecan con la circunferencia circunscrita en los puntos A' B' y C'.

Sean R y r los radios de las circunferencias circunscrita e inscrita, respectivamente.

Probar que
$$\frac{[ABC]}{[A'B'C']} = \frac{2r}{R}$$
.

Peiró, R. (2007): -Documento interno no publicado.



Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca

Las mediatrices de ΔABC cortan a la circunferencia circunscrita en A',B',C',\quad por tanto $OA'\perp BC,\quad$ de ahí $\not AA'OC'=180-\beta$ y $\not AA'C'O=\not AOA'C'=rac{\beta}{2}.$

Análogamente, $\angle OC'B' = \frac{\alpha}{2} \gamma$ por tanto, la suma, el ángulo $\angle A'C'B' = 90 - \frac{\gamma}{2}$.

El área del triángulo $\Delta A'C'O$ es $[A'C'O] = \frac{R^2}{2} \cdot sen(180 - \beta) = \frac{R^2}{2} \cdot sen\beta = \frac{R^2}{2} \cdot \frac{b}{2R} = \frac{R}{4} \cdot b.$

Con esto el área del triángulo $\Delta A'B'C'$ es

$$[A'B'C'] = \frac{R}{4} \cdot (a+b+c) = \frac{R}{2} \cdot s = \frac{R}{2r} \cdot rs = \frac{R}{2r} \cdot [ABC]$$

que es lo que pretendíamos demostrar.

Nota.- Los ángulos de A'B'C' son $90-\frac{\alpha}{2}$, $90-\frac{\beta}{2}$ y $90-\frac{\gamma}{2}$ respectivamente. Si E es el pie de la altura desde B', $\angle CC'B' = \angle CBB' = \frac{\beta}{2} = \angle A'C'O$, por tanto OC' y CC' son isogonales para el triángulo $\Delta A'B'C'$. Como circuncentro y ortocentro son conjugados isogonales, entonces I es el ortocentro de este triángulo.

Además, el triángulo órtico de A'B'C' tiene ángulos $\alpha''=180-2\cdot\left(90-\frac{\alpha}{2}\right)=\alpha$, $\beta''=\beta$ y $\gamma''=\gamma$, o sea, es semejante a ABC.