Problema 732.

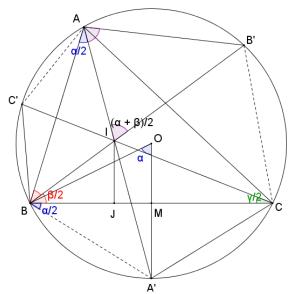
Problema 11.7 Sea I el incentro de ABC y sean A' B' C' las intersecciones de las bisectrices con la circunferencia circunscrita a ABC.

- 1.- Demostrar que (IA' IC')/IB =R
- 2.- Demostrar que (IA IC)/IB'=2r

Donde R es el circunradio y r es el inradio

Prasolov. V.V.(1986): Problemas de planimetría (Moscú)

Solution proposée par Philippe Fondanaiche



On désigne par R le rayon du cercle circonscrit et r le rayon du cercle inscrit, par α,β et γ les angles aux sommets A,B et C du triangle ABC.

Lemme 1: les triangles AB'I, BC'I et CA'I sont isocèles de sommets respectifs B',C' et A'. Démonstration : on a \angle B'IA= \angle B'AI = $(\alpha + \beta)/2$ etc...

Lemme 2: on a la relation $r/R = 4\sin(\alpha/2)\sin(\beta/2)\sin(\gamma/2)$

Démonstration :

Soient O le centre du cercle circonscrit, I le centre du cercle inscrit, M et J les projections respectives de O et de I sur le côté BC.

On a BC= 2BM = $2R\sin(\alpha)$ et BC = BJ + JC = $r*\cot(\beta/2)$ + $r*\cot(\gamma/2)$.

D'où r(cotg($\beta/2$) + cotg($\gamma/2$))=2Rsin(α) = 4Rsin($\alpha/2$)cos($\alpha/2$)

Or $\cot g(\beta/2) + \cot g(\gamma/2) = [\cos(\beta/2)\sin(\gamma/2) + \sin(\beta/2)\cos(\gamma/2]/[\sin(\beta/2)\sin(\gamma/2)]$ ou encore :

 $\cot g(\beta/2) + \cot g(\gamma/2) = \sin((\beta+\gamma)/2)/[\sin(\beta/2)\sin(\gamma/2)] = \cos(\alpha/2)/[\sin(\beta/2)\sin(\gamma/2)]$ Il en résulte r/R = $4\sin(\alpha/2)\sin(\beta/2)\sin(\gamma/2)$. Cqfd.

D'après le lemme 1, on a les relations :

IA'= A'B = 2OB. $\sin(\alpha/2)$ = $2R\sin(\alpha/2)$, IB'= B'C = $2R\sin(\beta/2)$ et IC'= C'A = $2R\sin(\gamma/2)$ Par ailleurs IA = $r/\sin(\alpha/2)$, IB = $r/\sin(\beta/2)$ et IC = $r/\sin(\gamma/2)$

D'après le lemme 2, le calcul des expressions IA'.IC'/IB et IA.IC/IB' donne respectivement les rayons R et 2r. Cqfd.