Problema 734

4.- Elementos de un triángulo.

4.1.4)

Sea ABC un triángulo.

P un punto de la circunferencia circunscrita del arco BC que no contiene a A.

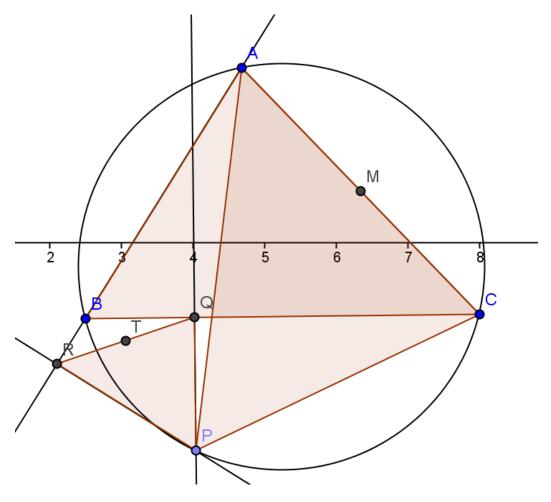
Sean Q la proyección de P sobre BC y R la proyección de P sobre AB.

Sea T el punto medio de QR y sea M el punto medio de AC.

Demostrar que el ángulo $\angle PTM$ es recto

Akopyan A.(2011):Geometry in Figures.

Solución del director.



Observemos que los triángulos PRQ y PAC son semejantes.

Sean α , β , γ γ los ángulos de ABC, γ sea $\angle BCP = \omega$.

Es
$$\angle APC = \beta$$
, $\angle ACP = \omega + \gamma$, $\angle PAC = \alpha - \omega$

El cuadrilátero PQBR es inscribible en una circunferencia.

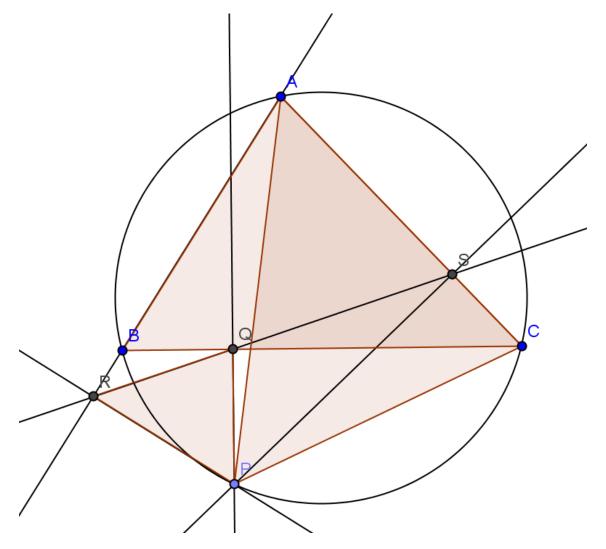
Luego
$$\angle PRQ = \angle PBQ = \angle PBC = \angle PAC = \alpha - \omega \ \angle RPQ = 180^{\circ} - \angle RBQ = \beta$$
.

Así es $\angle RQP = \gamma + \omega$, y por tanto son semejantes.

Dado que PRQ y PAC tienen en común el vértice P, al ser semejantes se transforman mediante un giro de centro P , y ángulo $\angle CPQ = 90^{\circ} - \omega$ y homotecia de centro P y razón $\frac{PC}{PO}$

De esta manera al ser las medianas homólogas en la transformación, es $\angle MPT = 90^{\circ}-\omega$

Consideremos ahora la proyección de P sobre AC. Sea S el punto de corte de la perpendicular desde P a AC.



Se trata de que RQS es la recta de Simson.

Busquemos el ángulo RSA.

Dado que $\angle PRQ = \alpha - \omega$, es $\angle SRA = 90^{\circ} - \alpha + \omega$, por lo que en el triángulo ASR es

$$\angle ASR = 90^{\circ} - \omega$$

Así el cuadrilátero SMTP es inscrito, y al ser MSP recto, lo es PTM, cqd.

Ricardo Barroso Campos

Jubilado.

Sevilla.