Problema 734

Sea ABC un triángulo.

Sea P un punto de la circunferencia circunscrita de $\stackrel{\triangle}{ABC}$ del arco $\stackrel{\frown}{BC}$ que no contiene a A. Sean Q la proyección de P sobre $\stackrel{\frown}{BC}$ y R la proyección de P sobre $\stackrel{\frown}{AB}$.

Sea T el punto medio de $\overline{\mathsf{QR}}$ i sea M el punto medio de $\overline{\mathsf{AC}}$.

Demostrar que el ángulo ∠PTM es recto.

Demostración:



La recta RQ es la recta Simson del punto P (de la circunferencia circunscrita al

triángulo \overrightarrow{ABC}) que pasa por el punto proyección de P sobre el lado \overline{AC} .

Sea $\alpha = \angle BPR$.

El cuadrilátero BRQP es inscriptible ya que \angle BRP = \angle BQP = 90°.

Entonces, $\angle BQR = \alpha$.

$$\angle CQS = \angle BQR = \alpha$$
, $\angle RBQ = \angle RPQ = B$.

El cuadrilátero PQCS es inscriptible ja que \angle PQC = \angle PSC = 90°.

Entonces, $\angle CPS = \angle CQS = \alpha$.

Entonces, $\angle PCA = 90^{\circ} + \alpha$.

 $\angle PQR = 90^{\circ} + \alpha$.

 $\angle APC = B$.

Entonces, los triángulos \overrightarrow{PQR} , \overrightarrow{PCA} son semejantes.

Un giro de centro P y ángulo $\angle \text{CPQ}\$ superpone los dos triángulos.

Entonces:

$$\angle$$
MPT = \angle CPQ.

$$\frac{PT}{\overline{PM}} = \frac{PQ}{\overline{PC}}$$

Entonces, los triángulos \overrightarrow{PCA} , \overrightarrow{PMT} son semejantes, por tanto: $\angle \overrightarrow{PTM} = \angle \overrightarrow{PQC} = 90^{\circ}$.