Pr. Cabri 738 Solución de César Beade Franco

Enunciado

Sea un triángulo ABC. En cada vértice prolongamos los dos lados que en él convergen multiplicando su longitud por un mismo factor k. Así, en A prolongamos el lado BA hasta un punto P tal que BP = kBA y el lado CA hasta Q de modo que CQ = kCA, etc.

Demostrar que los 6 puntos así obtenidos están sobre una elipse homotética a la exelipse de Steiner y calcular dicha razón de homotecia.

Solución

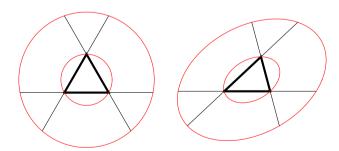
Caulquier triángulo es el transformado afín de otro, en particular, del equilátero de vértices $A(\frac{1}{2}, \frac{\sqrt{3}}{2})$, B(0,0) y C(1,0).

Las elipses de Steiner de tal triángulo son, respectivamente, las circunferencias inscrita (interior) y circunscrita (exterior) que se conservan (en cuanto elipses) en una transformación afín.

Si prolongamoslos lados, los 6 puntos del enunciado están sobre otra circunferencia concéntrica.

Estas circunferencias tienen centro $(\frac{1}{2}, \frac{1}{2\sqrt{3}})$ y como pasan por los puntos (1,0) y

(k,0) sus radios respectivos son R= $\frac{1}{\sqrt{3}}$ y R'= $\sqrt{\frac{1}{3}}$ - k + k² . La razón de homotecia es $\sqrt{1-3\,k+3\,k^2}$.



En el dibujo vemos la situación para k=2. La razón entre las áreas es curiosamente 7.