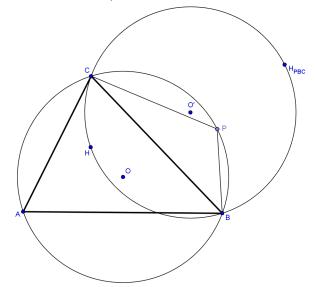
Solución al Problema 739 propuesto en Triángulos Cabri quincena del 16 al 30 de junio de 2015

enviada por Andrea Fanchini Cantù, Italia.

junio 18, 2015

Problema 739. Adolfo Soler, Ingeniero de Telecomunicaciones y estudiante de Matemáticas. Sea un triángulo ABC, C la circunferencia que circunscribe a dicho triángulo y σ la reflexión axial de eje la recta BC. Si suponemos que P es un punto de la circunferencia C tal que $P \neq B$ y $P \neq C$, demostrar que los ortocentros de ABC y de PBC pertenecen a $\sigma(C)$.

Solución 739. (Andrea Fanchini, Cantù, Italia)



Usando coordenadas baricéntricas el centro O' de σ simétrico del circuncentro O respecto al punto medio de BC tiene coordenadas $O'(-a^2S_A:S^2+S_AS_C:S^2+S_AS_B)$. Ahora la ecuación de una circunferencia general es

$$a^{2}yz + b^{2}zx + c^{2}xy - (x + y + z)(px + qy + rz) = 0$$

Pero la σ pasa por los vértices B y C por tanto será q=0 y r=0 además el radio es $\rho=R=\frac{abc}{2S}$. Entonces la ecuación de σ será

$$a^{2}yz + b^{2}zx + c^{2}xy - (x + y + z)\left(\frac{c^{2}y_{0}^{2} + 2S_{A}y_{0}z_{0} + b^{2}z_{0}^{2}}{(x_{0} + y_{0} + z_{0})^{2}} - \rho^{2}\right)x$$

donde $(x_0:y_0:z_0)$ son las coordenadas del centro. Sustituendo, desarrollando y simplificando se tiene que la ecuación de σ es

$$a^{2}yz + b^{2}zx + c^{2}xy - 2(x+y+z)S_{A}x = 0$$

Ahora si P(u:v:w) es un punto de la circunferencia circunscrita se tiene que $a^2vw + b^2uw + c^2uv = 0$. Hallamos las coordenadas del ortocentro de PBC como interseccion de las alturas desde B y C. El punto de l'infinito de la recta perpendicular a CP es $CP_{\infty\perp}(-a^2v - S_Cu:b^2u + S_Cv:S_Bv - S_Au)$ por tanto la alturas desde B tiene ecuación

$$\begin{vmatrix} 0 & 1 & 0 \\ -a^{2}v - S_{C}u & b^{2}u + S_{C}v & S_{B}v - S_{A}u \\ x & y & z \end{vmatrix} = 0 \quad \Rightarrow \quad BCP_{\infty\perp} \equiv (S_{B}v - S_{A}u)x + (a^{2}v + S_{C}u)z = 0$$

El punto de l'infinito de la recta perpendicular a BP es $BP_{\infty\perp}(a^2w+S_Bu:S_Au-S_Cw:-c^2u-S_Bw)$

por tanto la alturas desde C tiene ecuación

$$\begin{vmatrix} 0 & 0 & 1 \\ a^2w + S_Bu & S_Au - S_Cw & -c^2u - S_Bw \\ x & y & z \end{vmatrix} = 0 \quad \Rightarrow \quad CBP_{\infty\perp} \equiv (S_Cw - S_Au)x + (a^2w + S_Bu)y = 0$$

Así, siendo que $a^2vw + b^2uw + c^2uv = 0$, el ortocentro de PBC es

$$H_{PBC} = BP_{\infty \perp} \cap CBP_{\infty \perp} = \left(S^2u - a^2S_A(u + v + w) : S^2v + S_AS_C(u + v + w) : S^2w + S_AS_B(u + v + w) \right)$$

Sus coordenadas tienen que satisfacer la ecuación de σ : $a^2yz + b^2zx + c^2xy - 2(x+y+z)S_Ax = 0$, entonces

$$a^{2}(S^{2}v + S_{A}S_{C}(u + v + w))(S^{2}w + S_{A}S_{B}(u + v + w)) + b^{2}(S^{2}w + S_{A}S_{B}(u + v + w))(S^{2}u - a^{2}S_{A}(u + v + w)) + c^{2}(S^{2}u - a^{2}S_{A}(u + v + w))(S^{2}v + S_{A}S_{C}(u + v + w)) - 2S_{A}S^{2}(u + v + w)(S_{B}S_{C}u - a^{2}S_{A}v - a^{2}S_{A}w) = \left(S_{A}S^{2}(u + v + w)\right)(-a^{2}S_{A}(u + v + w) + (b^{2}S_{B} + c^{2}S_{C})u - a^{2}S_{A}v - a^{2}S_{A}w - 2S_{B}S_{C}u + 2a^{2}S_{A}v + 2a^{2}S_{A}w) = 0$$
por tanto el ortocentro de PBC pertenece a $\sigma(C)$.

Por el ortocentro $H(S_BS_C:S_CS_A:S_AS_B)$ de \overline{ABC} la verificación es inmediata

$$a^2S_A^2S_BS_C + b^2S_AS_B^2S_C + c^2S_AS_BS_C^2 - 2S_AS_BS_CS^2 = S_AS_BS_C(a^2S_A + b^2S_B + c^2S_C - 2S^2) = 0, \quad q.e.d.$$