Pr. Cabri 739

Propuesto por Adolfo Soler, Ingeniero de Telecomunicaciones y estudiante de Matemáticas

Solución de César Beade Franco

Enunciado

Sea un triángulo ABC, α la circunferencia que circunscribe a dicho triángulo y σ la reflexión axial de eje la recta BC.

Si suponemos que P es un punto de la circunferencia C tal que P \neq B y P \neq C, demostrar que los ortocentros de ABC y de PBC pertenecen a σ (α).

Solución

Llamemos H y H' a los ortocentros de ABC y PBC respectivamente. H' pertenece siempre a la simétrica respecto a cualquier lado de la circunscrita a ABC (1). Sea β la circunscrita a H'BC. P es el ortocentro de H'BC (2), que estará situado en la circunferencia simétrica de β respecto a BC. Además P $\in \alpha$. Así que $\alpha = \sigma$ (β) $\iff \beta = \sigma$ (α). Y H' está sobre σ (α), lo mismo que H.

Notas

- (1) Ver "Retorno a la Geometría", pg. 37, de Coxeter y Greitzer.
- (2) Se sabe que si Q es el ortocentro de PBC, entoces P lo es de QBC. De hecho los 4 triángulos de vértices A,B,C,H (ortocentro de ABC) tienen como ortocentro el cuarto vértice.