Problema 739

Sea un triángulo $\stackrel{\triangle}{ABC}$, C_1 la circunferencia que circunscribe a dicho triángulo y σ la reflexión axial de eje la recta BC.

Si suponemos que P es un punto de la circunferencia C tal que P \neq B y P \neq C, demostrar que los ortocentros de ABC y de PBC pertenecen a σ (C₁)

Soler, A. (2015): Comunicación personal.

Solución de Ricard Peiró.

Supongamos A agudo.

Sea H el ortocentro del triángulo ABC.

$$\angle$$
BHC = 180 $^{\circ}$ -A.

La circunferencia $\sigma(C_1)$ queda dividida por la recta BC

en dos arcos de medidas A, 180º-A.

Entonces, H pertenece al arco capaz de la circunferencia $\sigma(C_1)$ de 180° -A sobre el segmento \overline{BC} .

Sea P un punto de la circunferencia C₁.

Supongamos que P pertenece al arco BAC ∠BPC = A .

Sea K el ortocentro del triángulo PBC.

$$\angle$$
BKC = 180°-A.

Entonces, K pertenece al arco capaz de la circunferencia $\sigma(C_1)$ de 180°-A sobre el segmento \overline{BC} .

Supongamos que P no pertenece al arco BAC

$$\angle$$
BPC = 180 $^{\circ}$ -A.

$$\angle BKC = A$$
.

Entonces, K pertenece al arco capaz de la circunferencia $\sigma(C_1)$ de ángulo A sobre el segmento \overline{BC} .

Si A no es agudo la demostración es análoga.

