Problema 739.

Sea un triángulo ABC, (Γ) la circunferencia que circunscribe a dicho triángulo y σ la reflexión axial de eje la recta BC.

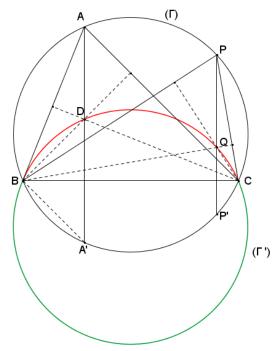
Si suponemos que P es un punto de la circunferencia C tal que P \neq B y P \neq C, demostrar que los ortocentros de ABC y de PBC pertenecen a σ (Γ).

Soler, A. (2015): Comunicación personal.

Solution proposée par Philippe Fondanaiche

On désigne par (Γ) le cercle circonscrit au triangle ABC et par (Γ') le cercle transformé de (Γ) par symétrie axiale d'axe BC.

Soient D l'orthocentre du triangle ABC et Q l'orthocentre du triangle PBC avec P point courant sur la circonférence de (Γ) .



Lemme : le symétrique de D par rapport à BC est le point d'intersection A' autre que A de la hauteur issue de A avec le cercle (Γ)

Cette propriété résulte du fait que \angle A'BC = \angle A'AC = 90° - \angle ACB et DBC = 90° - \angle ACB. D'où \angle A'BD = \angle DBC. A'BD est isocèle et BC est médiatrice de A'D.

On a les relations d'angles :

$$\angle BQC = 180^{\circ} - \angle CBQ - \angle BCQ = 180^{\circ} - (90^{\circ} - \angle BCP) - (90^{\circ} - \angle BPC) = \angle BCP + \angle BPC = 180^{\circ} - \angle BAC = \angle BDC = \angle BA'C = constante.$$

Quand P parcourt l'arc de (Γ) qui contient le sommet A, les points B et C étant exclus, le lieu de Q est donc l'arc de cercle (en rouge sur la figure supra) qui est sous-tendu par l'angle constant \angle BQC et qui contient le point D. D'après le lemme cet arc de cercle est le symétrique de l'arc BA'C de (Γ) par rapport à l'axe BC.

Quand P parcourt l'arc de (Γ) qui ne contient pas le sommet A, le lieu de Q est alors l'arc de cercle (en vert sur la fugure supra) qui est le symétrique de l'arc BAC.

Conclusion : quand P parcourt toute la circonférence de (Γ) - B et C exclus - , Q parcourt le cecrle (Γ) dans sa totalité - B et C exclus.