Problema 749

Sobre un ángulo de 60º(III)

Sea ABC un triángulo con AB<AC

Sean O el circuncentro e I el incentro.

Sean A₁ B₁ C₁ los puntos de contacto de la circunferencia inscrita con BC, AC y AB.

La bisectriz de <B₁ A₁ C₁ es perpendicular a OI si y sólo si <A=60 $^{\circ}$.

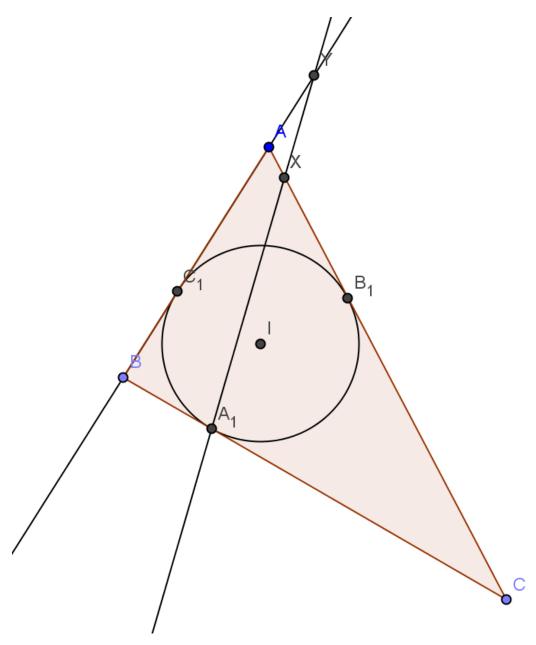
Fondanaiche, P. (2015): Comunicación personal.

Solución del director

Sea ABC con <A=60°.

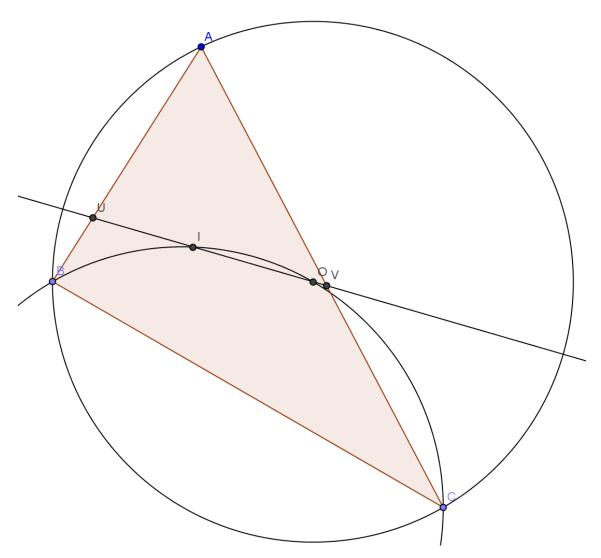
Se conoce que BC₁=BA₁y que CA₁=CB₁ por las tangencias correspondientes.

Así, si el triángulo AB C es 60° , β , 120° - β , <C₁A₁B= 90° - $(\beta/2)$, <B₁A₁C= 30° + $(\beta/2)$, por lo que C₁A₁B₁= 60° .



Si A_1X , con X sobre AC es la bisectriz <X $A_1B=120^{\circ}-(\beta/2)$. Si A_1Y , con Y sobre AB es la bisectriz, <Y $A_1C=60^{\circ}+(\beta/2)$. Así <A $_1XC=\beta/2$. <AYA $_1=60-(\beta/2)$ [1]

Por otra parte <BIC=120º, BOC=120º, con lo que AIOC son concíclicos.



Sean U y V las intersecciones de AB y AC con la recta OI.

<OIC=<OBC= 30° , <BIC= 120° , <UIC= 30° , IBU= $\beta/2$, luego <BUI= 150° -($\beta/2$).

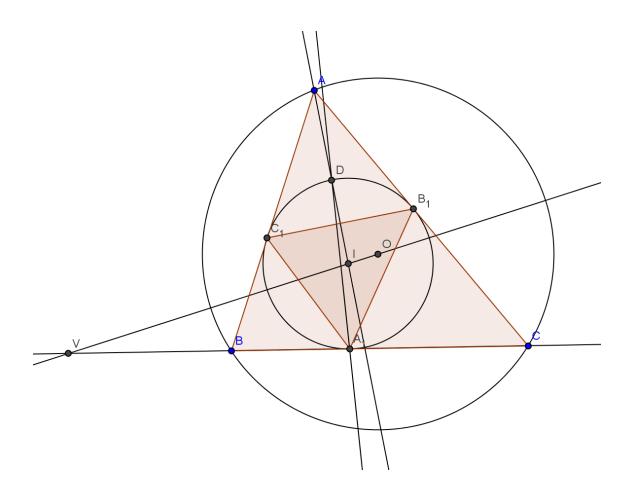
<AUV=30 $^{\circ}+\beta/2$ [2]. De donde considerando [1] y [2], se deduce lo pedido.

Sea la implicación inversa.

Sea ABC con ángulos α , β , γ .

Supongamos que la bisectriz de <B $_1$ A $_1$ C $_1$ es perpendicular a OI.

Dado que I es el circuncentro de B_1 A_1 C_1 , la bisectriz del ángulo pedido cortará a la mediatriz del lado B_1 C_1 en su confluencia D con la circunferencia inscrita a ABC, es decir la circunscrita a B_1 A_1 C_1 . La mediatriz de B_1 C_1 , al ser el triángulo B_1 A C_1 isósceles por construcción, es a su vez la bisectriz del ángulo BAC.



Además si la recta IO corta a la recta BC en V , <DVA₁= <DVI por la doble tangencia.

Por la construcción realizada, $\langle BA_1C_1=(\alpha/2)+(\gamma/2), \langle CA_1B_1=(\alpha/2)+(\beta/2), \langle C_1A_1B_1=(\gamma/2)+(\beta/2) \rangle$

Así, <C1A₁ D=(γ /4)+ (β /4), y es <DA₁B=(α /2)+ (β /4)+ 3(γ /4)

Por la tangencia comentada, es <ADV== $(\alpha/2)+(\beta/4)+3(\gamma/4)$

Así <DVA= $(\beta/2)$ - $(\gamma/2)$.

Además si la recta VD corta a AB en S y a AC en T, estudiemos los ángulos AST y ATS:

El ser ID perpendicular a ST implica que AD además de ser bisectriz de ST es mediatriz de ST, con lo que el triángulo AST es también isósceles y semejante al AC_1B_1 , con

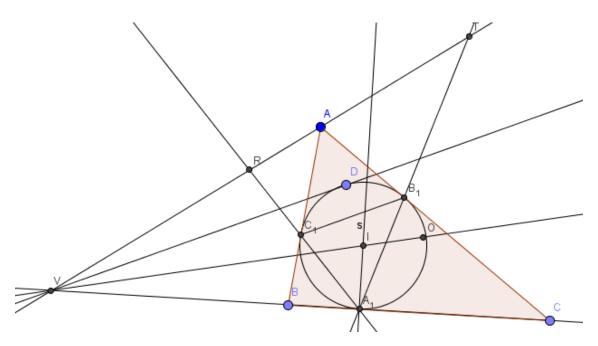
$$<$$
AST= $<$ ATS= $(\beta/2)+(\alpha/2)$.

Sea A_3 el pie de la altura del vértice A sobre el lado BC. Dado que D es tal que VDA es rectángulo en D y que VA_3A es rectángulo en A_3 el cuadrilátero ADB_3V es inscriptible, siendo pues $<AVD=<AB_3D=<AB_3I=<BAI-<BAB_3=(\alpha/2)-(90^9-\beta)=(\beta/2)-(\gamma/2)$, con lo que deducimos que

<AVD=<DVI=<IVA₁= $(\beta/4)$ - $(\gamma/4)$.

Y además <AVA₁=3(β/4)- 3(γ/4).

Tracemos ahora la rectas VA, A_1C_1 y A_1B_1 , que construirán el triángulo A_1 RT que vamos a analizar.



Tracemos la bisectriz del ángulo C₁A₁B₁ que cortará a la base RT en W.

$$<\mathsf{RWA}_1 = <\mathsf{VWA}_1 = 180 - (<\mathsf{WVA}_1 + <\mathsf{VA}_1 \mathsf{W}) = 180 - (3(\beta/4) - 3(\gamma/4)) - (<\mathsf{VA}_1 \mathsf{C}_1 + <\mathsf{C}_1 \mathsf{A}_1 \mathsf{W}) = (\alpha+\beta+\gamma) - (3(\beta/4) + 3(\gamma/4)) - (90^\circ - (\beta/2)) - (45^\circ - (\alpha/4)) = (\alpha/2) + \gamma$$

De manera análoga haciendo cálculos tenemos:

$$$$

Así pues, el triángulo estudiado RA₁T "puede tener" de ángulos β α γ .

Luego tenemos 90-($\alpha/2$)= α , y cqd, α =60 $^{\circ}$.

Ricardo Barroso Campos

Jubilado

Sevilla.