Problema 741.-

Si a, b y c son las longitudes de tres segmentos que forman un triángulo, demostrar que las longitudes $\frac{1}{a+b}$, $\frac{1}{b+c}$ y $\frac{1}{c+a}$ también lo forman.

Linis, V. (1975) Eureka (2)

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Las condiciones que habrán de verificar las longitudes de esos segmentos exigirán que se cumplan estas desigualdades

$$\frac{1}{a+b} + \frac{1}{b+c} - \frac{1}{c+a} > 0$$

$$\frac{1}{b+c} + \frac{1}{c+a} - \frac{1}{a+b} > 0$$

$$\frac{1}{c+a} + \frac{1}{a+b} - \frac{1}{b+c} > 0$$

Probaremos cualquiera de ellas. Sea por ejemplo, la primera:

$$\frac{1}{a+b} + \frac{1}{b+c} - \frac{1}{c+a} = \frac{a^2 + ab - b^2 + ac + bc + c^2}{(a+b)(b+c)(c+a)} = \frac{a^2 + b(a+c-b) + ac + c^2}{(a+b)(b+c)(c+a)} > 0,$$

ya que $a+c-b>0 \leftrightarrow a+c>b$

De forma similar se probarían las otras dos desigualdades triangulares.