Problema 742.

Sea H el ortocentro del triángulo acutángulo ABC, y sean A₁, B₁, C₁ los circuncentros de los triángulos BCH, CAH, ABH.

Demostrar que las rectas AA₁, BB₁ CC₁ concurren.

Komal (2011): Mayo

http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201105&t=mat&l=en

N. de D. (la restricción a los acutángulos creo que no es necesaria)

Solución del director.

Solución

 $BA_1=CA_1=BC_1=AC_1=CB_1=AB_1=OA=OB=OC.$

Es decir, las circunferencias circunscritas a HAB, HBC y HCA son las simétricas de la circunferencia circunscrita a ABC respecto a AB, BC y CA.

Además si α, β y ô son los ángulos de ABC, tenemos que

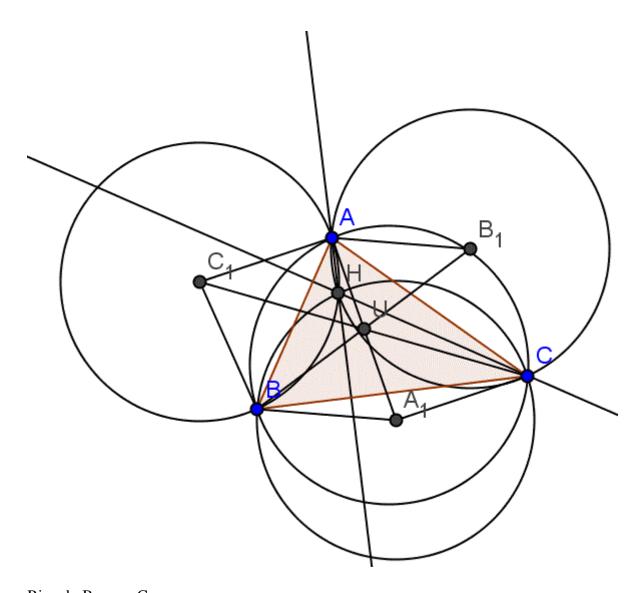
 $< AC_1B = 2\hat{o}, < C_1AB_1 = 2\alpha, < AB_1C = 2\beta, B_1CA_1 = 2\hat{o}, < CA_1B = 2\alpha, A_1BC_1 = 2\beta$

Así, si trazamos A₁A, tendremos dos cuadriláteros:

 A_1CB_1A y A_1BC_1A , que son tales que <C A_1A =<C $_1AA_1$, y <B A_1A =<B $_1AA_1$, por ser los lados y ángulos de ambos cuadriláteros iguales en sentido contrario.

De igual manera sucede con B_1B ; tendremos los cuadriláteros B_1CA_1B , y BC_1AB_1 , cuyos ángulos son iguales en sentido contrario.

Así si trazamos A_1A y B_1B se cortarán en U siendo los triángulos AB_1U y A_1UB con los tres ángulos iguales y el lado $AB_1=A_1B$. Por ello U es el punto medio de AA_1 y de B_1B . De igual manera es el punto medio de B_1B y C_1C



Ricardo Barroso Campos.

Jubilado. Sevilla