Problema 742.

Sea H el ortocentro del triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$.

Sean A', B', C' los circuncentros de los triángulos $\stackrel{\triangle}{\mathsf{BHC}}$, $\stackrel{\triangle}{\mathsf{AHC}}$, $\stackrel{\triangle}{\mathsf{AHB}}$, respectivamente. Probar que las rectas AA', BB', CC' concurren.

Solución de Ricard Peiró i Estruch:

Sea O el circumcentro del triángulo ABC.

 $\overline{A'B'}$ pertenece a la mediatriz del segmento \overline{CH} .

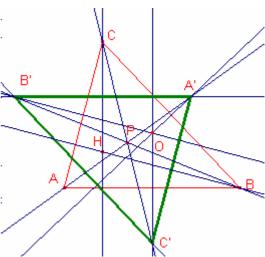
 $\overline{\mathsf{CH}}$ es perpendicular al lado $\overline{\mathsf{AB}}$.

Entonces, $\overline{A'B'}$ es paralelo al lado \overline{AB} .

Análogamente, $\overline{A'C'}$ es paralelo al lado \overline{AC} , $\overline{B'C'}$ es paralelo al lado \overline{BC} .

Entonces, los triángulos $\stackrel{\Delta}{\mathsf{ABC}}$, $\stackrel{\Delta}{\mathsf{B'C'}}$ son homotéticos.

El centro de 'homotécia es la intersección de las rectas AA', BB', CC'.



Veamos que los dos triángulos $\stackrel{\Delta}{\mathsf{ABC}}$, $\mathsf{A'B'C'}$ son iguales.

$$\overline{\mathsf{B}'\mathsf{A}} = \overline{\mathsf{B}'\mathsf{C}} = \overline{\mathsf{B}'\mathsf{H}}$$
.

$$\overline{C'A} = \overline{C'B} = \overline{C'H}$$
.

$$\angle AB'H = 2\angle ACH = 2(90^{\circ}-A) = 180^{\circ}-2A$$
.

$$\angle$$
CB'H = 2 \angle CAH = 2(90°-C) = 180°-2C

Entonces,
$$\angle AB'C = 360^{\circ}-2A-2C = 2B$$
.

$$\angle AOC = 2B$$
.

Entonces, los triángulos isósceles $\overrightarrow{AB'C}$, \overrightarrow{AOC} .

Entonces: $\overline{B'H} = \overline{B'A} = \overline{OA}$.

$$\angle AC'H = 2\angle ABH = 2(90^{\circ}-C) = 180^{\circ}-2C$$
.

Entonces, els triángulos isósceles $\overrightarrow{AB'H}$, $\overrightarrow{AC'H}$ son iguales. Entonces:

$$\overline{B'A} = \overline{C'A} = \overline{B'C} = \overline{C'B} = \overline{B'H} = \overline{C'H}$$
.

Análogamente, $\overline{A'H} = \overline{B'H} = \overline{C'H}$.

Entonces, H es el circuncentro del triángulo A'B'C'.

Entonces, los triángulos $\stackrel{\triangle}{ABC}$, $\stackrel{\triangle}{A'B'C'}$ son semejantes y tienen igual radio de la circunferencia circunscrita, por tanto, son iguales.

Los triángulos son homotéticos de razón -1.

Los circuncentros de los dos triángulos son homotéticos por tanto, el centro de homotecia es el punto medio del segmento \overline{OH} .