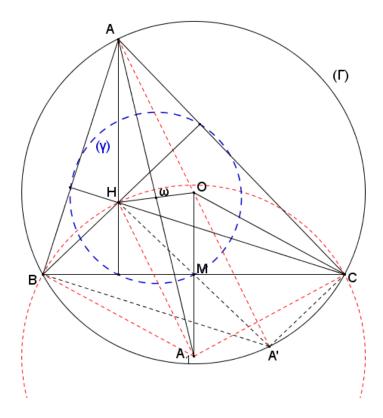
Problema 742

Sea H el ortocentro del triángulo acutángulo ABC, y sean A₁, B₁, C₁ los circuncentros de los triángulos BCH, CAH, ABH.Demostrar que las rectas AA₁, BB₁ CC₁ concurren.

Komal (2011): Mayo

Solution proposée par Philippe Fondanaiche



Nous allons démontrer que les droites AA_1 , BB_1 et CC_1 sont concourantes au point ω centre du cercle d'Euler (γ) du triangle ABC. Pour ce faire,comme le point ω est le milieu du segment OH qui joint le centre O du cercle (Γ) circonscrit au triangle ABC à l'orthocentre H de ce même triangle, il suffit de démonter que AA_1 passe par le milieu de OH.

Lemme n°1 : M étant le milieu du côté BC, AH = 2OM.

Démonstration : soit A' le point diamétralement opposé à A sur le cercle (Γ). L'angle \angle ACA' étant droit, on a \angle BCA' = 90° – \angle BCA = \angle CBH. Les droites BH et CA' sont donc parallèles. Il en est de même des droites BA' et CH. Le quadrilatère BHCA' est un parallélogramme dont les diaogonales BC et A'H se coupent en leur milieu M. Les triangles AHA' et OMA' sont homothétiques dans l'homothétie de centre A' et de rapport 2. Il en résulte AH = 20M.

Lemme n°2 : Le point symétrique de O par rapport à BC est le centre du cercle circonscrit au triangle BCH.

Démonstration : soit A_1 le symétrique de O par rapport au côté BC. D'où $OC = A_1C = A_1B$. D'après le lemme précédent, $AH = OA_1$. Comme les droites AH et OA_1 , perpendiculaires à BC, sont parallèles, AOA_1H est un parallélogramme et l'on a $OA = A_1H$. Comme OA = OC, on a donc $A_1H = A_1B = A_1C$. Cqfd.

Pour finaliser la démonstration, il suffit de constater que dans le parallélogramme AOA_1H , les diagonales AA et OH se coupent au point ω centre du cercle d'Euler (γ) du triangle ABC. Cqfd.