Problema 742.- Sea H el ortocentro del triángulo acutángulo ABC, y sean A_1, B_1, C_1 los circuncentros de los triángulos BCH, CAH, ABH. Demostrar que las rectas AA_1 , BB_1 , CC_1 concurren.

Komal (2011): Mayo. http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201105&t=mat&l=en

N. de D. (la restricción a los acutángulos creo que no es necesaria)

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Las circunferencias circunscritas a los triángulos BAH y CAH tienen sus centros respectivos C_1 y B_1 sobre la mediatriz de AH, por tanto están sobre una paralela al lado BC. Análogamente sucede con los otros pares de centros, por tanto, los puntos A_1, B_1, C_1 resultan de las intersecciones de las mediatrices de los segmentos AH, BH y CH. En consecuencia el triángulo $T_1 = A_1B_1C_1$ es de lados paralelos al triángulo T = ABC y homológico a él (la recta de homología es la del infinito) y queda demostrada la intersección de las rectas XX_1 .

Lo que vamos a demostrar ahora es que el triángulo T_1 es isométrico al triángulo T. Más concretamente: T y T_1 son simétricos respecto del centro N de la circunferencia de los nueve puntos.

El punto medio de AH es un punto de esta circunferencia, como también lo es el punto medio de BC. El triángulo T_1 tiene dos vértices en la mediatriz de AH, por tanto, ese lado B_1C_1 contiene el punto medio de AH. Su simétrico respecto del centro N es el punto medio de BC según se deduce fácilmente del cálculo que sigue.

El punto medio de AH es $\frac{1}{2}(OA+OH)$; el de BC es $\frac{1}{2}(OB+OC)$, cualquiera que sea O. Y el punto medio de estos dos es N, pues $\frac{1}{2}\Big[\frac{1}{2}(OA+OH)+\frac{1}{2}(OB+OC)\Big]=\frac{1}{4}(OA+OB+OC+OH)=\frac{1}{4}(OH+OH)=\frac{1}{2}OH=ON$ tomando O igual al circuncentro de T.

De esto se deduce que el segmento B_1C_1 se transforma, por simetría central respecto de N, en el segmento BC y con esto concluimos.