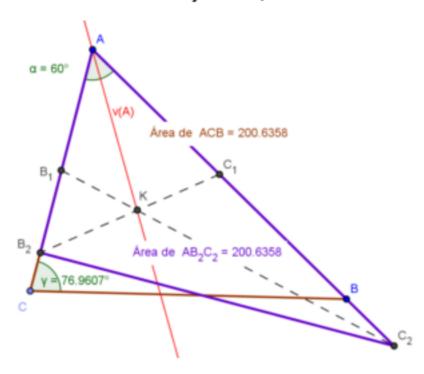
Problema 744.

63. El incentro del triángulo ABC es K. El punto medio de AB es C_1 y el de AC es B_1 . Las rectas C_1K y AC se cortan en B_2 , las rectas B_1K y AB se cortan en C_2 . Si las áreas de los triángulos AB_2C_2 y ABC son iguales, ¿cuál es la medida del ángulo CAB?

Problemas planteado en diversas olimpiadas en el mundo.

http://www.sectormatematica.cl/olimpiadas/probmundo.htm

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Usando coordenadas baricéntricas vamos a determinar los vértices del segundo triángulo. Para el punto medio de AB, tenemos $C_1=(1:1:0)$ y para el incentro K=(a:b:c). La recta que los une es la de ecuación cx-cy+(b-a)z=0 que alcanza al lado AC (y=0) en el punto $B_2=(a-b:0:c)=\left(\frac{a-b}{2(s-b)},0,\frac{c}{2(s-b)}\right)$ donde s es el semiperímetro de ABC.

De ahí $\overrightarrow{AB_2} = \frac{c}{2(s-b)} \cdot \overrightarrow{AC}$ y por tanto la longitud del vector es $AB_2 = \frac{bc}{2(s-b)}$. Procediendo para el otro vértice de forma análoga llegaremos a $AC_2 = \frac{bc}{2(s-c)}$.

Que los triángulos ABC y AB_2C_2 tengan igual área significa que $AB \cdot AC = AB_2 \cdot AC_2$.

Con los cálculos efectuados, esa condición es equivalente a

$$\frac{bc}{4(s-b)(s-c)} = 1 \tag{*}$$

La expresión trigonométrica del seno del ángulo mitad es

$$\frac{(s-b)(s-c)}{bc} = sen^2 \frac{A}{2} \quad (**)$$

Multiplicando ambas se obtiene sen $\frac{A}{2}=\frac{1}{2}$ (para un triángulo no es posible el valor negativo), de donde $\angle CAB=\hat{A}=60^\circ$.