Problema 747.

Sea $\stackrel{\Delta}{\mathsf{ABC}}$ un triángulo con $\overline{\mathsf{AB}} < \overline{\mathsf{AC}}$. Sean I el incentro, O el circumcentro y H el ortocentro.

La recta Al es mediatriz de \overline{OH} si y sólo si A = 60° .

Solución de Ricard Peiró i Estruch:

Siga R el radi de la circunferencia inscrita.

Aplicando el teorema de los senos al triángulo $\stackrel{\scriptscriptstyle\Delta}{\mathsf{ABC}}$:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = 2R.$$

$$\angle CAH = 90^{\circ}-C$$
, $\angle ACH = 90^{\circ}-A$:

Entonces,
$$\angle AHC = A + C = 180^{\circ}-B$$
.

$$\angle AOB = 2B$$
, entonces, $\angle CAO = 90^{\circ}-B$.

Aplicando el teorema de los senos al triángulo \overrightarrow{AHC} :

$$\frac{\overline{AH}}{\cos A} = \frac{b}{\sin B} = 2R.$$

La recta AI es mediatriz de \overline{OH} , entonces, $\overline{AO} = \overline{AH} = R$.

$$\frac{R}{\cos A} = 2R$$
. Entonces, $\cos A = \frac{1}{2}$. Por tanto, $A = 60^{\circ}$. (\Leftarrow)

Supongamos que $A = 60^{\circ}$.

Aplicando el teorema de los senos al triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{HC}}$:

$$\frac{\overline{AH}}{\cos 60^{\circ}} = \frac{b}{\sin B} = 2R$$
. Entonces, $\overline{AH} = R$.

$$\angle OAI = \angle CAI - \angle CAO = 30^{\circ} - (90^{\circ} - B) = B - 60^{\circ}$$
.

$$\angle HAI = \angle BAI - \angle BAH = 30^{\circ} - (90^{\circ} - B) = B - 60^{\circ}.$$

Entonces, AI es bisectriz del triángulo isósceles, $\stackrel{\triangle}{\mathsf{AOH}}$.

Por tanto, Al es mediatriz del segmente $\overline{\text{OH}}$.

