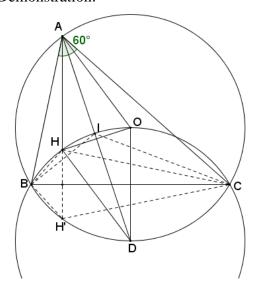
Problema 747

Sea ABC un triángulo con AB<AC. Sean I el incentro, O el circuncentro y H el ortocentro. La recta AI es mediatriz de OH si y sólo si <A=60°.

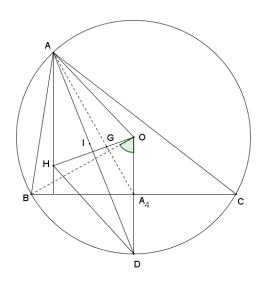
Solution proposée par Philippe Fondanaiche

Si l'angle \angle BAC = 60° , alors la droite AI est médiatrice de OH Démonstration:



La bissectrice de l'angle \angle BAC coupe le cercle circonscrit au triangle ABC au point D milieu de l'arc BC qui ne contient pas A, tel que OD est perpendiculaire à BC.Par ailleurs \angle BOC = $2\angle$ BAC = 120° = \angle BDC. Les triangles OBD et OCD sont équilatéraux. On a donc OA = OB = OC = OD = BD Soit H' le symétrique de l'orthocentre H par rapport au côté BC. On a \angle BHC = \angle BH'C = 180° – \angle BAC = 120° .Les quatre points B,H,O et C sont donc sur un même cercle de centre D. Donc HD = OD . Le quadrilatère AODH a deux côtés parallèles AH et OD et trois de ses côtés AO,OD et HD sont égaux entre eux. C'est donc un losange et AD est la médiatrice de OH.

Réciproquement, si la bissectrice AI est médiatrice de OH, alors ∠**BAC** = **60**° Démonstration



Soit G le centre de gravité du triangle ABC. Ce point G est situé sur la droite d'Euler OH de sorte que GH = 2GO. Soit A_4 le milieu du côté BC. L'homothétie de centre G et de rapport -1/2 transforme le triangle AHG en le triangle A_4 OG tel que OA_4 = AH/2. Par hypothèse AD est médiatrice de OH.

Donc AH = OA = OB = OD. Il en résulte que $OA_4 = OB/2$ et $\angle BOA_4 = a 60^\circ$.

D'où \angle BAC = \angle BOC/2 = \angle BOA₄ = 60°