Problema 748.-

Sobre un ángulo de 60º (II)

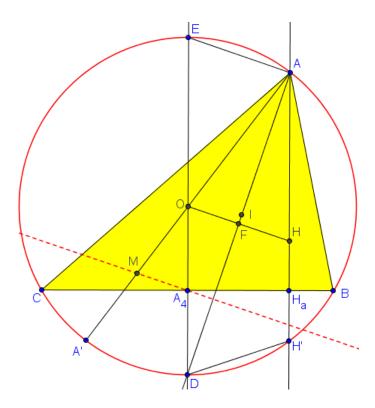
Sea ABC un triángulo con AB<AC. Sea D el punto medio del arco BC que no contiene a A. Sea A' el punto diametralmente opuesto a A. Sea A_4 el punto medio del lado BC. La recta perpendicular a AD por A_4 corta a OA' en su punto medio si y sólo si <A=60º.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Dem.-

Si realizamos la construcción indicada, podemos observar los siguientes hechos de interés:



Sea A_4M perpendicular a AD, siendo M, punto medio de OA'. Entonces A_4M es la paralela media de A'D. Por tanto, $A_4O=A_4D$. Como también se sabe que $H_aH=H_aH'$.

De modo que podemos establecer las siguientes igualdades:

 $OH = DH' = A'D = EA \rightarrow OH y EA paralelos.$

Como O es el punto medio de ED, entonces OH pasará por F, punto medio de AD, que lo será también del segmento OH. Así, tenemos que AI será la mediatriz del segmento OH y por el problema 746, implicará que $A = 60^{\circ}$

Si $\not A = 60^{\circ} \rightarrow AI$ será mediatriz del segmento OH. Por tanto, AE = OH = A'D. Además, como ya se ha visto en el Problema 746, A_4 será el punto medio de OD. Si consideramos M, punto medio de OA', entonces MA_4 es la paralela media de A'D y, por tanto perpendicular a AD.

Luego A₄M es perpendicular a AD, siendo M, punto medio de OA'.