Problema 748.

Sea \overrightarrow{ABC} un triángulo con $\overline{AB} < \overline{AC}$.

Sea D el punto medio de el arco BC que no contiene a A.

Sea A' el punto diametralmente opuesto a A, respecto de la circunferencia circunscrita.

Sea A_4 el punto medio del lado \overline{BC} .

La recta perpendicular a AD que pasa por $\,{\rm A}_4\,$ corta a OA' en el punto medio si y sólo si $\,{\rm A}=60^{\rm o}$.

Solución de Ricard Peiró:

Sea R el radio de la circunferencia circunscrita al triángulo $\stackrel{\scriptscriptstyle\Delta}{\mathsf{ABC}}$.

Sea O el circuncentro.

Sea P la intersección de la recta perpendicular a AD que pasa por A₄ y OA'.

(⇒)

Supongamos que $\overline{OP} = \overline{PA}'$.

 \angle A'DA = 90°, A₄P es perpendicular a AD, Entonces:

Los segmentos \overline{AD} , $\overline{A_4P}$ son paralelos

Los triángulos \overrightarrow{ODA}' \overrightarrow{OA}_4P son semejantes y de razón 2:1. Aplicando el teorema de Tales:

$$\overline{OA_4} = \overline{A_4D}$$
.

$$\overline{OB} = \overline{OC} = \overline{OD} = R$$
.

Entonces, los triángulos OA₄C, OA₄B son iguales..

Entonces, $\angle CA_4O = 90^\circ$.

Entonces, los triángulos $\stackrel{\triangle}{\text{COD}}$ $\stackrel{\triangle}{\text{BOD}}$ son equiláteros.

Entonces, $\angle COB = 120^{\circ}$, entonces, $A = 60^{\circ}$.

Supongamos que $A = 60^{\circ}$.

$$\angle$$
COD = \angle DOB = 60°.

 $\overline{OC} = \overline{OD} = R$, entonces, los triángulos \overrightarrow{COD} \overrightarrow{BOD} son equiláteros.

Entonces, OBDC es un rombo.

 \angle A'DA = 90°, A₄P es perpendicular a AD, Entonces:

Los segmentos \overline{AD} , $\overline{A_4P}$ son paralelos

Por tanto, A_4 es el punto medio de la diagonal \overline{OD} .

Los triángulos \overrightarrow{ODA}' $\overrightarrow{OA}_4^{\Lambda}$ P son semejantes y de razón 2:1. Aplicando el teorema de Tales:

$$\overline{\mathsf{OP}} = \overline{\mathsf{PA}}'$$
.

