Problema 748

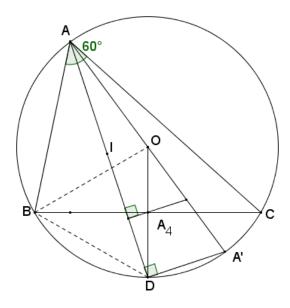
Sea ABC un triángulo con AB<AC. Sea D el punto medio del arco BC que no contiene a A.Sea A' el punto diametralmente opuesto a A. Sea A4 el punto medio del lado BC.

La recta perpendicular a AD por A4 corta a OA' en su punto medio si y sólo si <A=60°.

Solution proposée par Philippe Fondanaiche

Si l'angle \angle BAC = 60°, alors la perpendiculaire à la bissectrice de l'angle en A passant par le milieu du côté BC coupe OA' en son milieu.

Démonstration



La bissectrice AI de l'angle \angle BAC coupe le cercle circonscrit au triangle ABC au milieu D de l'arc BC qui ne contient pas A. D'autre part AA' étant diamètre du cercle circonscrit au triangle ABC, on a \angle ADA' = 90°.

Si \angle BAC = 60°, alors \angle BOC = $2\angle$ BAC = 120° = 180° - \angle BAC = \angle BDC et le triangle OBD est équilatéral. Le point A₄ est en même temps milieu du côté BC et du segment OD. Comme l'angle \angle ADA' est droit, la perpendiculaire menée de A₄ à AD est parallèle à DA' et comme A₄ est milieu de OD, elle partage le segment OA' en son milieu.

Réciproquement, si la perpendiculaire à la bissectrice de l'angle en A passant par le milieu du côté BC coupe OA' en son milieu, alors \angle BAC = 60°

Démonstration

La perpendiculaire à la bissectrice de l'angle en A étant parallèle à DA', coupe OD en son milieu. On en déduit que D est symétrique de O par rapport au côté BC. \angle BDC = 180° – \angle BAC = \angle BOC = $2\angle$ BAC. D'où \angle BAC = 60° .