Problema 749.-

Sobre un ángulo de 60º (III)

Sea ABC un triángulo con AB<AC. Sean O el circuncentro e I el incentro. Sean $A_1B_1C_1$ los puntos de contacto de la circunferencia inscrita con BC, AC y AB.

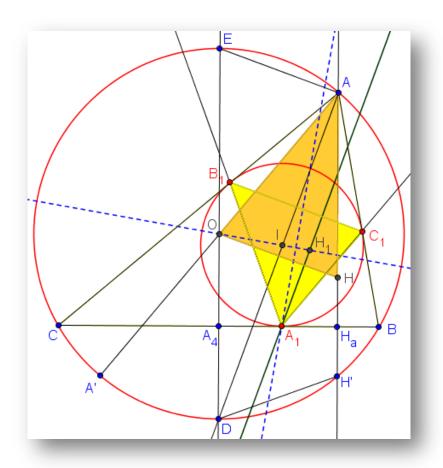
La bisectriz de $\langle B_1 A_1 C_1 \rangle$ es perpendicular a OI si y sólo si $\langle A=60^\circ \rangle$ si y sólo si $\langle A=60^\circ \rangle$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Dem.-

Si realizamos la construcción indicada, podemos observar los siguientes hechos de interés:



Tenemos la equivalencia siguiente: $A=60^{\circ}$ si y sólo si $A_1=60^{\circ}$.

Por tanto, según el problema 747, la recta AI es mediatriz de OH si y sólo si <A=60º.

En nuestro caso, y considerando ahora el triángulo $A_1B_1C_1$ y, si consideramos J_1 su incentro y H_1 su ortocentro, entonces <A $_1$ =60 $^\circ$ si y sólo si la recta A_1J_1 será mediatriz de IH $_1$, ya que el circuncentro del triángulo $A_1B_1C_1$ es el propio punto I.

El ortocentro H_1 deberá estar sobre la altura trazada por el vértice A. Por tanto, esta altura será la paralela a AI, trazada por A_1 . De esta forma, el punto H_1 deberá estar sobre la recta OI y así se tendrá que A_1H_1 =r, radio de la inscrita. Por tanto, se verifica que $A_1I=A_1H_1$. Y esto sólo es posible si y sólo si $A_1=60^\circ$, como ya se demostró en el Problema 747.

Así concluimos de igual forma que:

"La bisectriz de $< B_1 A_1 C_1$ es perpendicular a OI si y sólo si $< A=60^{\circ}$ "