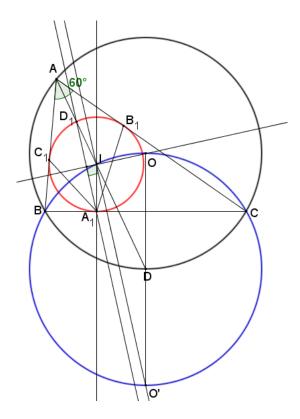
Problema 749

Sea ABC un triángulo con AB<AC. Sean O el circuncentro e I el incentro. Sean A_1 B_1 C_1 los puntos de contacto de la circunferencia inscrita con BC, AC y AB. La bisectriz de <B $_1$ A_1 C_1 es perpendicular a OI si y sólo si <A=60°.

Solution proposée par Philippe Fondanaiche

Si l'angle \angle BAC = 60°, alors la droite OI est perpendiculaire à la bissectrice de l'angle \angle B₁A₁C₁ Démonstration



La bissectrice de l'angle \angle BAC rencontre le cercle circonscrit au triangle ABC au point D qui est le milieu de l'arc BC qui ne contient pas A tandis que la bissectrice de l'angle \angle B₁A₁C₁ rencontre le cercle inscrit du triangle ABC au point D₁ qui est le milieu de l'arc B₁C₁ qui ne contient pas A₁. Soit O' le point symétrique du centre O du cercle circonscrit au triangle ABC par rapport à D. Si \angle BAC = 60°, alors \angle BIC = 90° + \angle BAC/2 = 120° = 2 \angle BAC = \angle BOC. Les quatre points B,I,O et C sont cocycliques.

Le triangle DBI est isocèle car \angle DBI = \angle DBC + \angle CBI = (\angle BAC + \angle CBA)/2 et \angle DIB = \angle ABI + \angle BAI = (\angle BAC + \angle CBA)/2. Donc DB = DI. Les points B,I,O et C sont sur le cercle de centre D et de rayon DI.

Il en résulte $\angle A_1 IO' = \angle IO'D = \angle O'ID = \angle D_1 A_1 I$ et la droite IO' est parallèle à $A_1 D_1$. Dans le cercle circonscrit au quadrilatère BIOC, OO' est un diamètre et $\angle O'IO = 90^\circ$. La droite OI est donc perpendiculaire à la droite $A_1 D_1$ parallèle à O'I.

Réciproquement si la droite OI est perpendiculaire à la bissectrice de l'angle $\angle B_1A_1C_1$, alors $\angle BAC = 60^\circ$.

On a les relations d'angles : $\angle AIO' = \angle IO'O = \angle O'IO$.

D'où $2 \angle A_1 IO' = \angle A_1 ID = 2 \angle D_1 A_1 I$ soit $\angle A_1 IO' = \angle D_1 A_1 I$, ce qui entraine IO' parallèle à $A_1 D_1$. La droite OI est alors perpendiculaire à IO' et le point I appartient au cercle circonscrit au quadrilatère BOCO'. Il en résulte $90^\circ + \angle BAC/2 = \angle BIC = \angle BOC = 2 \angle BAC$, soit $\angle BAC = 60^\circ$