Sobre un ángulo de 60º(III)

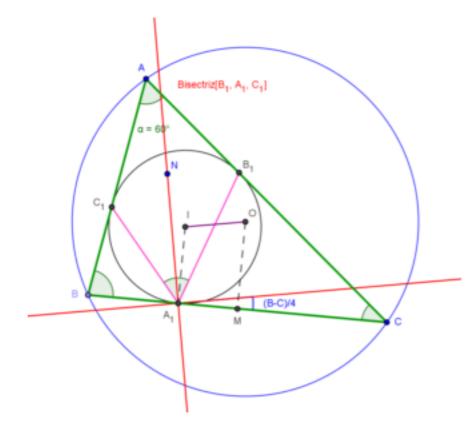
Sea ABC un triángulo con AB < AC. Sean O el circuncentro e I el incentro.

Sean A_1 , B_1 , C_1 los puntos de contacto de la circunferencia inscrita con BC, AC y AB.

La bisectriz de $\angle B_1A_1C_1$ es perpendicular a OI si y sólo si $< A = 60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Supondremos unos ejes de coordenadas centrados en A_1 , con BC como eje de abscisas y A_1I de ordenadas. M es el punto medio de BC, R y r los radios de las circunferencias circunscrita e inscrita respectivamente. De este modo tenemos I=(0,r); $O=(A_1M,OM)$. La recta que pasa por ellos es la de ecuación

$$r_{IO}$$
: $y-r=\frac{OM-r}{A_1M}x$.

Vamos hallar, en primer lugar, la pendiente de la bisectriz del ángulo $\varphi = \cancel{4}B_1A_1C_1$.

En el triángulo isósceles CA_1B_1 los ángulos iguales miden $90-\frac{c}{2}$. El ángulo φ mide $90-\frac{A}{2}$, por eso para $\theta=4NA_1C$ tendremos:

$$\theta = 90 - \frac{c}{2} + 45 - \frac{A}{4} = 135 - \frac{c}{2} - \frac{180 - B - C}{4} = 90 + \frac{B - C}{4}$$

La bisectriz exterior, perpendicular a ésta, tendrá por pendiente $\tan \frac{B-C}{4}$.

Este valor ha de ser también el de la pendiente de la recta r_{IO} . Calculemos esa pendiente.

$$A_1M = BM - BA_1 = \frac{a}{2} - (s - b) = \frac{b - c}{2} = R(sen B - sen C); OM - r = R \cdot cos A - r.$$

La pendiente de la recta definida por I y O es pues $\frac{OM-r}{A_1M} = \frac{R \cdot \cos A - r}{R(sen B - sen C)}$.

Vamos a intentar conseguir una expresión más manejable en la que sólo intervengan los ángulos del triángulo ABC y así poder compararla con la obtenida para la bisectriz exterior de φ .

Una de las varias expresiones que ligan los diferentes elementos de un triángulo es

$$r = 4R \cdot sen \frac{A}{2} \cdot sen \frac{B}{2} \cdot sen \frac{C}{2}$$

Con ella $R \cdot \cos A - r = R \left(\cos A - 4 \cdot \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}\right)$. Usaremos $\sin \frac{A}{2} = \cos \frac{B+C}{2}$ para los ángulos de un triángulo cualquiera y otras identidades trigonométricas.

$$\cos A - 4 \cdot \operatorname{sen} \frac{A}{2} \cdot \operatorname{sen} \frac{B}{2} \cdot \operatorname{sen} \frac{C}{2} = \cos A + 2 \cdot \operatorname{sen} \frac{A}{2} \cdot \left(-2 \cdot \operatorname{sen} \frac{B}{2} \cdot \operatorname{sen} \frac{C}{2}\right)$$

$$= 1 - 2 \cdot \left(\operatorname{sen} \frac{A}{2}\right)^2 + 2 \cdot \operatorname{sen} \frac{A}{2} \cdot \left(\cos \frac{B + C}{2} - \cos \frac{B - C}{2}\right)$$

$$= 1 - 2 \cdot \left(\operatorname{sen} \frac{A}{2}\right)^2 + 2 \cdot \operatorname{sen} \frac{A}{2} \cdot \left(\operatorname{sen} \frac{A}{2} - \cos \frac{B - C}{2}\right)$$

$$= 1 - 2 \cdot \operatorname{sen} \frac{A}{2} \cdot \cos \frac{B - C}{2} = 1 - 2 \cdot \cos \frac{B + C}{2} \cdot \cos \frac{B - C}{2}$$

$$= 1 - \cos B - \cos C$$

Con este cálculo sumamente laborioso obtenemos la expresión más sencilla de la pendiente de IO en función de los ángulos del triángulo:

$$pend(IO) = \frac{1 - \cos B - \cos C}{\sin B - \sin C}.$$

Ahora buscamos soluciones para la ecuación trigonométrica

$$\frac{1-\cos B-\cos C}{\sin B-\sin C}=\tan \frac{B-C}{4}.$$

De $\tan\frac{B-C}{4} = \frac{1-\cos\frac{B-C}{2}}{\sin\frac{B-C}{2}}$ y $\sin B - \sin C = 2 \cdot \sin\frac{B-C}{2} \cdot \cos\frac{B+C}{2}$ suprimiendo denominadores llegamos a $1-\cos B - \cos C = 2 \cdot \cos\frac{B+C}{2} \cdot \left(1-\cos\frac{B-C}{2}\right)$

Usando ahora $\cos B + \cos C = 2 \cdot \cos \frac{B+C}{2} \cdot \cos \frac{B-C}{2}$,

$$1 - 2 \cdot \cos \frac{B + C}{2} \cdot \cos \frac{B - C}{2} = 2 \cdot \cos \frac{B + C}{2} \cdot \left(1 - \cos \frac{B - C}{2}\right)$$

y simplificando

$$1 = 2 \cdot \cos \frac{B+C}{2}$$

O de forma equivalente $1=2sen \frac{A}{2}$, de donde resulta, $A=60^{\circ}$.