Problema 750.-

Sobre un ángulo de 60º (IV)

Sea ABC un triángulo con AB<AC. Sean B_2 , C_2 los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB. Sea A'_2 la intersección de la mediatriz de B_2C_2 con BC. El triángulo $A'_2B_2C_2$ es equilátero si y sólo si $A=60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

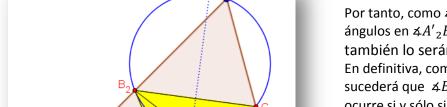
Dem.-

Si realizamos la construcción indicada, podemos observar que el punto I donde se cortan las bisectrices BB₂ y CC₂ es el incentro del triángulo ABC.

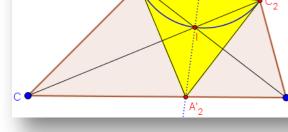
\Rightarrow Supongamos que $\angle BAC = 60^{\circ}$.

Entonces los ángulos $\angle BB_2A=120^{\underline{o}}-\frac{B}{2}$ $y \angle CC_2A=120^{\underline{o}}-\frac{C}{2} \rightarrow \angle IB_2A+\angle IC_2A=180^{\underline{o}}.$ Por tanto, el ángulo $\angle B_2IC_2=120^{\underline{o}}.$

De esta forma, el cuadrilátero IB_2AC_2 es inscriptible y la mediatriz del lado B_2C_2 en el triángulo AB_2C_2 cortará a la bisectriz del ángulo ABAC en dicho punto I.



Por tanto, como $4IB_2C_2=4IAC_2=4IC_2B_2=30^\circ$ y los ángulos en $4A'_2B_2C_2=4A'_2C_2B_2$ han de ser iguales, también lo serán los ángulos $4IB_2A'_2=4IC_2A'_2=\alpha$. En definitiva, como $4IA'_2B_2=4IA'_2C_2=60^\circ-\alpha$, sucederá que $4B_2IC_2=4C_2IB_2=120^\circ$ y esto sólo ocurre si y sólo si el triángulo $A'_2B_2C_2$ es equilátero.



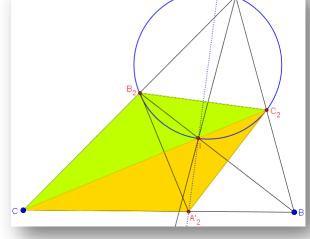
⇒ Supongamos que triángulo A'₂B₂C₂ es equilátero.

Sea la circunferencia que circunscribe al triángulo $A_2B_2C_2$. Entonces los triángulos $CC_2A'_2$ y CB_2C_2 son iguales por tener iguales un ángulo, $\measuredangle C/2$ y dos lados, CC_2 y $C_2A'_2 (= B_2C_2)$.

De la misma forma, probaríamos que: $\angle BB_2C_2 = \angle BB_2A'_2 = 30^{\circ} \rightarrow El\ triángulo\ IB_2C_2$ es isósceles.

Por tanto, la mediatriz del lado $B_2\mathcal{C}_2$ pasa por el punto I.

En definitiva, el punto I, intersección de la bisectriz en el ángulo A y la mediatriz del lado B_2C_2 pertenecerá a la circunferencia circunscrita al triángulo AB_2C_2 .



En definitiva, como el ángulo en I es de 120º, entonces el ángulo en A será de 60º.