Problema 750

Sobre un ángulo de 60º(IV)

Sea ABC un triángulo con AB<AC

Sean B₂ C₂ los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB.

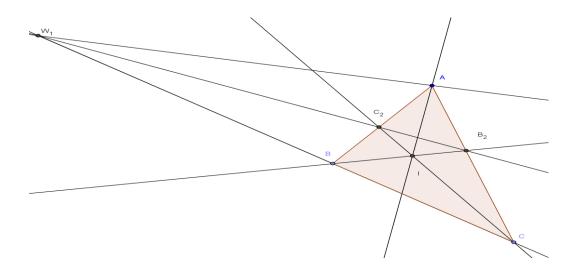
Sea A'₂ la intersección de la mediatriz de B2 C2 con BC.

El triángulo A'_2B_2 C_2 es equilátero si y sólo si <A=60 $^{\circ}$.

Fondanaiche, P. (2015): Comunicación personal.

Observación de Philippe: En el 750 el triángulo ABC ha de ser acutángulo (Editado el 19 de Octubre de 2015)

Solución del director.



Consideremos que A=60º, y sea W₁ el punto de corte de la recta C₂ B₂ con BC.

Es conocido que $AB_2=bc/(c+a)$, $B_2C=ba/(c+a)$, $AC_2=cb/(a+b)$, $C_2B=ca/(a+b)$

Es por el teorema de Menelao, $(W_1B)(AC_2)(B_2C) = (W_1C)(C_2B)(AB_2)$, de donde se tiene que

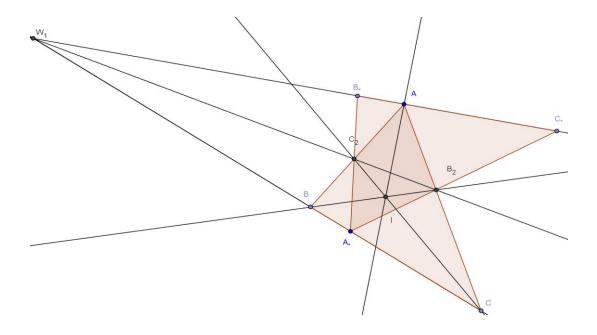
 $W_1B=ac/(b-c)$, con lo que W_1 es el pie de la bisectriz exterior del ángulo A.

Observemos el triángulo CAW₁. CC₂ es la bisectriz del ángulo C. CAB=60º por la construcción que hemos seguido.

Dado que <W₁AI=90 por ser AW₁ la bisectriz exterior, es <W₁AB=90º-30º=60º, por lo que C₂ es el incentro de CAW₁.

Ello implica que la recta W₁ C₂ B₂ es la bisectriz del ángulo AW₁C.

De ahí se tiene que si hacemos una simetría axial del triángulo ABC respecto a B_2C_2 , el triángulo A_* B_* C_* simétrico cumple que A_* pertenece a BC, y A está sobre B_*C_*



Busquemos el valor del ángulo BW₁ A.

Sean los ángulos de ABC 60º, β, 120º-β.

Sea A2 el pie de la bisectriz del ángulo A sobre BC.

Dado que A_2AW1 es recto y que $<BA_2A=150^\circ-\beta$, $<BW_1$ $A=\beta-60^\circ$. Así, $<C_2W_1A=<CW_1C_2=(\beta/2)-30^\circ$ Consideremos la circunferencia τ que contiene a A B_2C_2 .

Dado que $< C_2 IB_2 = 120^{\circ}$, I es de τ .

τ cortará a la recta AW₁ en un punto T. Busquemos el ángulo ATB₂

<ATB₂=180 $^{\circ}$ -<AC₂B₂=180 $^{\circ}$ - $(180<math>^{\circ}$ -<CC₂B₂-<CC₂A)=180 $^{\circ}$ - $(180<math>^{\circ}$ -30 $^{\circ}$ - $(120<math>^{\circ}$ - $(\beta/2)$))=150 $^{\circ}$ - $(\beta/2)$.

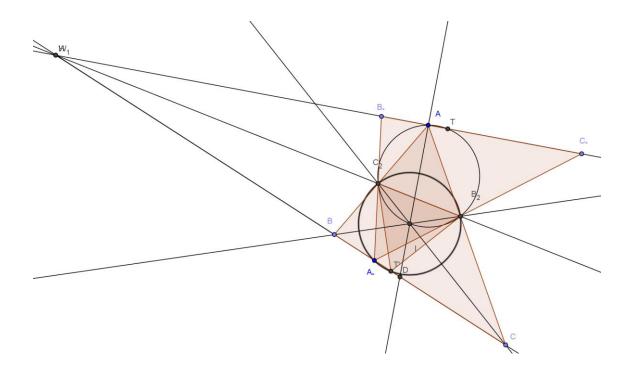
Dado que <C₂TB₂=<C₂AB₂ =60º por la construcción de T, se tiene que

 $<W_1TC_2=150^\circ-(\beta/2)-60^\circ=90^\circ-(\beta/2).$

Así pues considerando el triángulo W₁TC₂, tenemos que el ángulo W₁C₂T es:

$$$$

Así, el triángulo B_2C_2T es equilátero, y tomando su simétrico respecto a la recta B_2C_2 obtenemos que el punto $T_*=A'_2$ está sobre la mediatriz de B_2C_2 y sobre BC siendo $B_2C_2T^*$ el triángulo equilátero pedido.

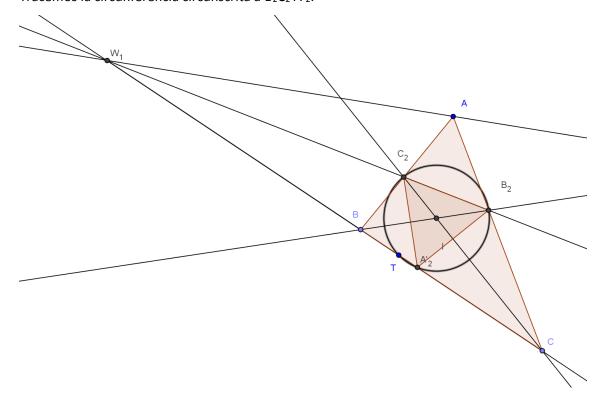


Sea ahora la situación de partida la de un triángulo ABC acutángulo tal que si trazamos la mediatriz de los pies B_2 C_2 de las bisectrices de los ángulos B y C sobre los lados AC y AB, corta al lado BC en A'_2 siendo B_2 C_2 A'_2 equilátero.

La recta C_2B_2 vimos en el apartado previo que corta a la recta BC en W_1 que es el pie de la bisectriz exterior en A.

Además vimos que C_2 es el incentro del triángulo AW_1C con lo que la recta $W_1C_2B_2$ es la bisectriz del ángulo AW_1B

Tracemos la circunferencia circunscrita a B₂C₂ A'₂.

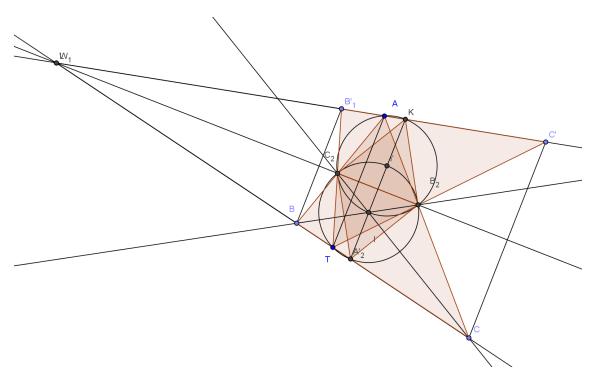


Cortará a BC en otro punto T, diferente a A'2.

Consideremos el triángulo B_2C_2T que tiene en el ángulo T 60º por la construcción hecha.

El triángulo simétrico de B₂C₂T respecto a B₂C₂, B₂ C₂ A, nos da el vértice A buscado.

Por la simetría, el ángulo en A es de 60º. Es tal que por la definición de la bisectriz, se forman los siguientes trapecios que resuelven el problema:



BB'1AT, AC'CT

Así los puntos BC_2A , por un lado y CB_2A por otro al ser diagonales de los trapecios mencionados, forman los lados del triángulo pedido y resolvemos el problema.

Ricardo Barroso Campos

Jubilado. Sevilla.