Problema 750.

Sea \overrightarrow{ABC} un triángulo con $\overrightarrow{AB} < \overrightarrow{AC}$.

Sean B_2 , C_2 los pies de las bisectrices de los ángulos B, C sobre los lados \overline{AC} , \overline{BC} .

Sea A'_2 la intersección de la mediatriz de $\overline{B_2C_2}$ con \overline{BC} .

El triángulo $A'_2 \stackrel{\scriptscriptstyle \Delta}{B}_2 C_2$ es equilátero si i sólo si $A=60^\circ$.

Solución de Ricard Peiró:

Por hipótesis $\overline{B_2A'_2} = \overline{C_2A'_2}$.

$$\angle CC_2A = B + \frac{C}{2}$$
, $\angle BB_2A = C + \frac{B}{2}$.

Entonces,
$$\angle C_2 IB_2 = 360^{\circ} - \left(A + B + \frac{C}{2} + C + \frac{B}{2}\right) = 90^{\circ} + \frac{A}{2}$$
.

(⇒)

Supongamos que el triángulo $A'_2 \overset{\Delta}{B}_2 C_2$ es equilátero

$$\angle CB_2B = 180^{\circ} - C - \frac{B}{2}$$
.

$$\angle CB_2A'_2 = 180^{\circ}-C-\frac{B}{2}-\frac{A}{2} = 90^{\circ}-\frac{C}{2}$$

Entonces,
$$\angle CA'_2B_2 = 90^{\circ} - \frac{C}{2}$$
.

Por tanto la bisectriz CI es mediatriz de $\overline{B_2A'_2}$.

Análogamente, la bisectriz BI es mediatriz de $\overline{B_2A'_2}$.

Entonces I es el circuncentro del triángulo $A'_2 \stackrel{\Delta}{B_2} C_2$.

Entonces,
$$\angle C_2 | B_2 = 120^\circ = 90^\circ + \frac{A}{2}$$

Entonces, $A = 60^{\circ}$.

(⇐)

Supongamos $A = 60^{\circ}$.

$$\angle C_2 IB_2 = 90^0 + \frac{A}{2} = 120^0$$
.

Entonces, el cuadrilátero AC₂IB₂ es inscriptible en una circunferencia.

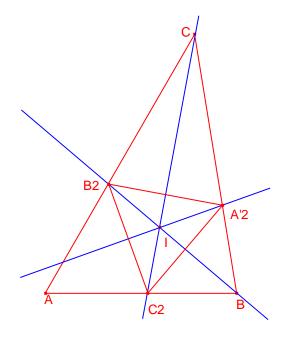
$$\angle C_2B_2I = \angle B_2AI = \frac{A}{2}$$
.

$$\angle B_2 C_2 I = \angle B_2 A I = \frac{A}{2}$$
.

Entonces, $\overline{B_2}I = \overline{C_2}I$. Entonces, I pertenece a la mediatriz $\overline{B_2}C_2$ del triángulo

$$A'_2 \overset{\Delta}{B}_2 C_2$$
.

$$\angle CB_2B = 180^{\circ} - C - \frac{B}{2}$$
.



$$\angle CB_2A'_2 = 180^{\circ}-C-\frac{B}{2}-\frac{A}{2} = 90^{\circ}-\frac{C}{2}$$
.

Entonces, el triángulo $A'_2 \hat{B}_2 C$ es isósceles.

Entonces, CI es mediatriz de $\overline{B_2A'_2}$.

Entonces, I es el circuncentro del triángulo $A'_2 \overset{\scriptscriptstyle \Delta}{B}_2 C_2$.

$$\overline{B_2I}=\overline{C_2I}=\overline{A'_2\,I}\,.$$

Entonces, los triángulos $B_2^{^{\Lambda}}C_2$, $A'_2^{^{\Lambda}}B_2$, $A'_2^{^{\Lambda}}C_2$ son iguales, entonces,

$$\overline{B_2C_2}=\overline{C_2A'_2}=\overline{A'_2\,B_2} \text{ , por tanto, } A'_2\,\overline{B}_2^\Delta C_2 \text{ es equilátero.}$$