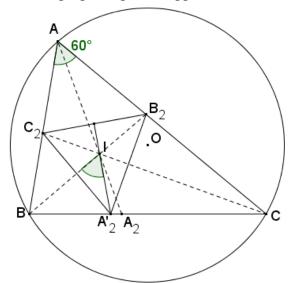
Problema 750

Sea ABC un acutangulo triángulo con AB<AC. Sean B_2 C_2 los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB. Sea A'₂ la intersección de la mediatriz de B_2 C_2 con BC. El triángulo A'₂ B_2 C_2 es equilátero si y sólo si <A= 60° .

Solution proposée par Philippe Fondanaiche



Si l'angle \angle BAC = 60°, alors le triangle A'₂B₂C₂ est équilatéral

Démonstration

Dans tout triangle ABC dont I est centre du cercle inscrit, on a la relation \angle BIC = 90° + \angle BAC/2. Si \angle BAC = 60°, alors \angle BIC = \angle B₂IC₂ = 120°. Les quatre points AB₂IC₂ sont alors cocycliques.

Comme $\angle IAB_2 = IAC_2 = 30^\circ$, les cordes IB et IC sont égales et la médiatrice du segment B_2C_2 qui coupe BC au point A'₂ passe donc par le point I et c'est en même temps la bissectrice de l'angle $\angle BIC$..

Il en résulte $\angle A_2'IB = 60^\circ = BIC_2 = 180^\circ - B_2IC_2$.

Les triangles IBA'_2 et IBC_2 étant isométriques (un côté commun et deux angles égaux deux à deux), on a $IA'_2 = IC_2$ et de la même manière $IA'_2 = IB_2$. D'où $IA'_2 = IB_2 = IC_2$ avec $\angle A'_2IB_2 = A'_2IC_2 = 120^\circ$. Le triangle $A'_2B_2C_2$ est équilatéral.

Réciproquement si le triangle $A'_2B_2C_2$ est équilatéral, alors $\angle BAC = 60^\circ$.

Démonstration

On considère les triangles BB₂A'₂ et BB₂C₂ qui partagent un côté commun BB₂.

On a $B_2A'_2 = B_2C_2$ et $\angle B_2BA'_2 = \angle B_2BC_2$.

On a deux cas de figure : soit $B_2A_2'B + B_2C_2B = 180^\circ$ soit $\angle B_2A_2'B = \angle B_2C_2B$.

Comme par hypothèse le triangle ABC est acutangle, \angle ABC $< 90^{\circ}$ et que $C_2BA'_2 = 60^{\circ}$, on en déduit $B_2A'_2B + B_2C_2B > 210^{\circ}$.

Dès lors $\angle B_2A'_2B = \angle B_2C_2B$, et les deux triangles $BB_2A'_2$ et BB_2C_2 sont isométriques. Il en résulte que $BA'_2 = BC_2$. D'où $IA'_2 = IC_2$. De la même manière $IA'_2 = IB_2$, le point I est le centre du cercle circonscrit au triangle $A'_2B_2C_2$.

D'où $\angle B_2IC_2 = 2 \angle B_2A'_2C_2 = 120^\circ = \angle BIC = \angle BAC/2 + 90^\circ \text{ donnant } \angle BAC = 60^\circ.$