Problema 750.

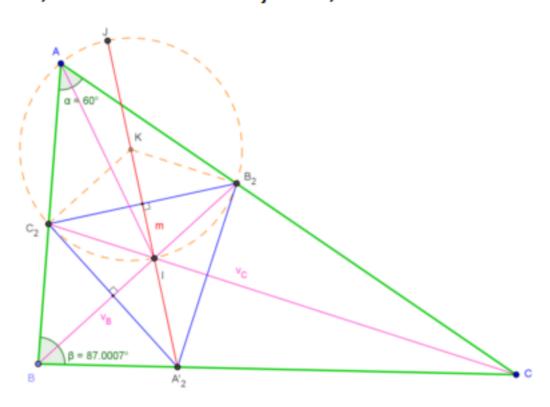
Sobre un ángulo de 60º (IV)

Sea ABC un triángulo acutángulo con AB < AC. Sean B_2 , C_2 los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB.

Sea A'_2 la intersección de la mediatriz de B_2C_2 con BC. El triángulo $A'_2B_2C_2$ es equilátero si y sólo si $A = 60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Si el triángulo $A'_2B_2C_2$ es equilátero, los triángulos BB_2C_2 y $BB_2A'_2$ son congruentes (comparten el lado BB_2 , tienen otro igual $(B_2C_2=B_2A'_2)$ y también el ángulo en B), por tanto $BC_2=BA'_2$, que indica que B está en la mediatriz m de A'_2C_2 y que el triángulo $B_2C_2A'_2$ es isósceles. De esto último resulta que el ángulo $4AC_2B_2=180-60-\left(90-\frac{\beta}{2}\right)=30+\frac{\beta}{2}$.

El mismo razonamiento indica que C está en la mediatriz de A'_2B_2 , por tanto I es el centro de ese triángulo equilátero y el ángulo $4AB_2C_2=30+\frac{\gamma}{2}$.

De
$$\alpha + \left(30 + \frac{\gamma}{2}\right) + \left(30 + \frac{\beta}{2}\right) = \alpha + 60 + \left(90 - \frac{\alpha}{2}\right) = 180$$
, se deduce que $\alpha = 60$.

Recíprocamente, si $\alpha=60$, $4C_2IB_2=120^\circ$ y por tanto el cuadrilátero C_2IB_2A es inscriptible. Como la mediatriz de un lado y la bisectriz del ángulo opuesto se encuentran siempre sobre la circunferencia circunscrita, tenemos que m pasa por I y que también es la bisectriz de $4C_2IB_2$. Con m,v_B,v_C tenemos en I seis ángulos de 60° y por tanto BI es la bisectriz de $4C_2IA_2'$, de donde resulta la igualdad de los triángulos C_2IB y A'_2IB y de ahí BI es mediatriz de A'_2C_2 . Como $4IC_2A'_2=30^\circ=4IC_2B_2$ concluimos que CI es la bisectriz de $4B_2C_2A'_2$. Otro tanto se obtiene razonando con CI. En resumen I es el incentro y el circuncentro y baricentro del triángulo $A'_2B_2C_2$. Por tanto, es equilátero como queríamos demostrar.