Problema 751.-

Sobre un ángulo de 60° (V). Sea ABC un triángulo con AB<AC. Sean B₂, C₂ los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB.

$$BC = BC_2 + B_2C$$
 si y sólo si $A=60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Dem.-

Si realizamos la construcción indicada, podemos observar que el punto I donde se cortan las bisectrices BB₂ y CC₂ es el incentro del triángulo ABC.

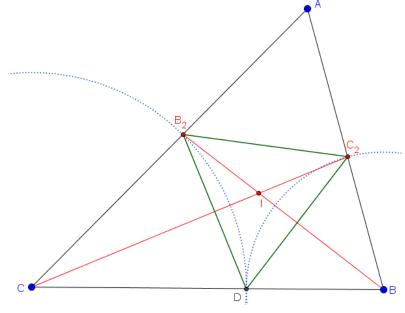
⇒ Supongamos que ∠BAC=60°.

Por el problema anterior, el P750, tenemos que el triángulo $A_2^{'}B_2^{'}C_2$ es equilátero. Como el punto I es incentro de dicho triángulo equilátero, también lo será circuncentro, y así las cevianas BB_2 y CC_2 serán mediatrices de los lados $A_2^{'}C_2$ y $A_2^{'}B_2$, respectivamente. Por tanto, se darán las siguientes igualdades entre segmentos:

$$BC_2=BA'_2$$
 y $CB_2=CA'_2 \rightarrow BC = BA'_2 + A'_2 C = BC_2 + B_2 C$

\Rightarrow Supongamos que $BC = BC_2 + B_2C$.

Entonces, podemos determinar sobre el lado BC, el punto D, de modo que BD=BC2 y CD=CB2. Por tanto, las



bisectrices BB_2 y CC_2 se convierten en mediatrices del triángulo B_2C_2D . Por tanto, la mediatriz del tercer lado, B_2C_2 pasa también por el punto I, incentro del triángulo inicial ABC.

De esta forma, este punto I deberá pertenecer a la circunferencia circunscrita al triángulo AB_2C_2 .

Por otro lado,

$$\angle BIC = \angle B_2IC_2$$
; $\angle BIC = 90^\circ + \angle \frac{1}{2}A$

$$\Rightarrow$$
 90° + $\measuredangle \frac{1}{2}A = 180° - \measuredangle A \Rightarrow \measuredangle A = 60°$