Problema 751.

Sea \overrightarrow{ABC} un triángulo con $\overline{AB} < \overline{AC}$.

Sean B_2 , C_2 los pies de las bisectrices de los ángulos B, C sobre los lados \overline{AC} , \overline{BC} .

$$\overline{BC} = \overline{BC_2} + \overline{CB_2}$$
 si y sólo si $A = 60^{\circ}$.

Solución de Ricard Peiró:

Aplicando la propiedad de la bisectriz del ángulo B del triángulo $\stackrel{\scriptscriptstyle\Delta}{\mathsf{ABC}}$:

$$\overline{BC_2} = \frac{ac}{a+b}$$
.

Aplicando la propiedad de la bisectriz del ángulo C del triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$:

$$\overline{CB}_2 = \frac{ab}{a+c}$$
.

$$\overline{BC_2} + \overline{CB_2} = a \left(\frac{c}{a+b} + \frac{b}{a+c} \right) = a \frac{b^2 + c^2 + ac + ab}{a^2 + ab + ac + bc}.$$

(⇒)

Supongamos que $\overline{BC} = \overline{BC_2} + \overline{CB_2}$.

$$a = a \frac{b^2 + c^2 + ac + ab}{a^2 + ab + ac + bc}$$
. Simplificando:

$$\frac{b^2 + c^2 + ac + ab}{a^2 + ab + ac + bc} = 1.$$

$$b^2 + c^2 + ac + ab = a^2 + ab + ac + bc$$
 . Simplificando:

$$a^2 = b^2 + c^2 - bc$$
.

Aplicando el teorema del coseno al triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$:

$$a^2 = b^2 + c^2 - 2bc \cdot cos A.$$

Entonces,
$$\cos A = \frac{1}{2}$$
, per tant, $A = 60^{\circ}$.

(⇐)

Supongamos $A = 60^{\circ}$.

$$\overline{BC_2} + \overline{CB_2} = a \frac{b^2 + c^2 + ac + ab}{a^2 + ab + ac + bc}$$

Aplicando el teorema del coseno al triángulo ABC:

$$a^2 = b^2 + c^2 - 2bc \cdot \cos 60^{\circ}.$$

$$a^2 = b^2 + c^2 - bc$$
.

$$\overline{BC_2} + \overline{CB_2} = a \frac{a^2 + bc + ac + ab}{a^2 + ab + ac + bc}$$
. Simplificando:

$$\overline{BC_2} + \overline{CB_2} = a$$
.

